Summary: | Wei Xue,1 Juhua Mao,2 Qingjie Chen,1 Weide Ling,1 Yuqi Sun3 1Department of Pharmacy, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, People’s Republic of China; 2Center for Drug Control, Lishui Institute for Quality Inspection and Testing, Lishui, Zhejiang 323000, People’s Republic of China; 3Department of Anesthesiology, Guangzhou 12th People’s Hospital, Guangzhou, Guangdong 510620, People’s Republic of ChinaCorrespondence: Yuqi SunGuangzhou 12th People’s Hospital, No. 1 Tianqiang Road, Tianhe District, Guangzhou, Guangdong 510620, People’s Republic of ChinaEmail yuqisunhh@163.comBackground: Diabetic nephropathy (DN) is the leading cause of impaired renal function. The purpose of this study was to investigate the effects of Mogroside IIIE (MG IIIE), a cucurbitane-type compound isolated from Siraitia grosvenorii, in high glucose (HG)-induced podocytes and the possible mechanisms.Methods: MPC-5 cells were cultured under normal glucose or HG conditions. After treatment with MG IIIE, cell viability was examined using a cell counting kit-8 assay. The contents of inflammatory factors and oxidative stress-related markers were determined using the corresponding kits. Additionally, apoptosis of MPC-5 cells was determined using flow cytometry assay and the levels of apoptosis-associated proteins were evaluated by Western blot analysis. Moreover, the expression of proteins in AMPK/SIRT1 signaling was tested and the compound C, an AMPK inhibitor, was used to study whether the effects of MG IIIE on HG-induced MPC-5 cells were mediated by activation of the AMPK/SIRT1 signaling pathway.Results: MG IIIE elevated the cell viability of HG-induced MPC-5 cells, reduced the concentrations of inflammatory cytokines and decreased the levels of oxidative stress-related markers. What’s more, the apoptosis of podocytes induced by HG was inhibited after MG IIIE intervention, accompanied by the upregulated expression of Bcl-2 and downregulated expression of Bax, cleaved caspase-3 and cleaved caspase-9. It was also found that MG IIIE could activate the AMPK/SIRT1 signaling, but compound C inhibited this pathway and reversed the inhibitory effects of MG IIIE on inflammation, oxidative stress and apoptosis in HG-stimulated podocytes.Conclusion: MG IIIE can alleviate HG-induced inflammation and oxidative stress of podocytes by the activation of AMPK-SIRT1 signaling.Keywords: podocytes, inflammation, oxidative stress, apoptosis, AMPK
|