Intensity correlation scan (IC-scan) technique to characterize the optical nonlinearities of scattering media
Abstract Light scattering, whether caused by desired or spurious elements, is considered one of the main phenomena that present great challenges for the nonlinear (NL) optical characterization of turbid media. The most relevant disturbing factor is the random deformation suffered by the spatial inte...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-05-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-023-34486-0 |
_version_ | 1797822877378019328 |
---|---|
author | Mariana J. B. Crispim Cícera C. S. Pereira Nathália T. C. Oliveira Martine Chevrollier Rafael A. de Oliveira Weliton S. Martins Albert S. Reyna |
author_facet | Mariana J. B. Crispim Cícera C. S. Pereira Nathália T. C. Oliveira Martine Chevrollier Rafael A. de Oliveira Weliton S. Martins Albert S. Reyna |
author_sort | Mariana J. B. Crispim |
collection | DOAJ |
description | Abstract Light scattering, whether caused by desired or spurious elements, is considered one of the main phenomena that present great challenges for the nonlinear (NL) optical characterization of turbid media. The most relevant disturbing factor is the random deformation suffered by the spatial intensity distribution of the laser beam due to multiple scattering. In this work, we report the intensity correlation scan (IC-scan) technique as a new tool to characterize the NL optical response of scattering media, by taking advantage of light scattering to generate speckle patterns sensitive to wavefront changes induced by the self-focusing and self-defocusing effects. Peak-to-valley transmittance curves, with a higher signal-to-noise ratio, are obtained by analyzing the spatial intensity correlation functions of the different speckle patterns, even in very turbid media where conventional NL spectroscopy techniques fail. To demonstrate the potential of the IC-scan technique, the NL characterization of colloids that contain a high concentration of silica nanospheres as scatterers, as well as gold nanorods, which act as NL particles and light scatterers, was performed. The results show that the IC-scan technique is more accurate, precise and robust to measure NL refractive indices in turbid media, overcoming limitations imposed by well-established Z-scan and D4σ techniques. |
first_indexed | 2024-03-13T10:15:48Z |
format | Article |
id | doaj.art-732a6cdd664c483ea593b00d98646bb1 |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-03-13T10:15:48Z |
publishDate | 2023-05-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-732a6cdd664c483ea593b00d98646bb12023-05-21T11:13:45ZengNature PortfolioScientific Reports2045-23222023-05-0113111310.1038/s41598-023-34486-0Intensity correlation scan (IC-scan) technique to characterize the optical nonlinearities of scattering mediaMariana J. B. Crispim0Cícera C. S. Pereira1Nathália T. C. Oliveira2Martine Chevrollier3Rafael A. de Oliveira4Weliton S. Martins5Albert S. Reyna6Programa de Pós-Graduação em Engenharia Física, Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de PernambucoPrograma de Pós-Graduação em Engenharia Física, Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de PernambucoPrograma de Pós-Graduação em Ciência de Materiais, Universidade Federal de PernambucoPrograma de Pós-Graduação em Engenharia Física, Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de PernambucoPrograma de Pós-Graduação em Engenharia Física, Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de PernambucoPrograma de Pós-Graduação em Engenharia Física, Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de PernambucoPrograma de Pós-Graduação em Engenharia Física, Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de PernambucoAbstract Light scattering, whether caused by desired or spurious elements, is considered one of the main phenomena that present great challenges for the nonlinear (NL) optical characterization of turbid media. The most relevant disturbing factor is the random deformation suffered by the spatial intensity distribution of the laser beam due to multiple scattering. In this work, we report the intensity correlation scan (IC-scan) technique as a new tool to characterize the NL optical response of scattering media, by taking advantage of light scattering to generate speckle patterns sensitive to wavefront changes induced by the self-focusing and self-defocusing effects. Peak-to-valley transmittance curves, with a higher signal-to-noise ratio, are obtained by analyzing the spatial intensity correlation functions of the different speckle patterns, even in very turbid media where conventional NL spectroscopy techniques fail. To demonstrate the potential of the IC-scan technique, the NL characterization of colloids that contain a high concentration of silica nanospheres as scatterers, as well as gold nanorods, which act as NL particles and light scatterers, was performed. The results show that the IC-scan technique is more accurate, precise and robust to measure NL refractive indices in turbid media, overcoming limitations imposed by well-established Z-scan and D4σ techniques.https://doi.org/10.1038/s41598-023-34486-0 |
spellingShingle | Mariana J. B. Crispim Cícera C. S. Pereira Nathália T. C. Oliveira Martine Chevrollier Rafael A. de Oliveira Weliton S. Martins Albert S. Reyna Intensity correlation scan (IC-scan) technique to characterize the optical nonlinearities of scattering media Scientific Reports |
title | Intensity correlation scan (IC-scan) technique to characterize the optical nonlinearities of scattering media |
title_full | Intensity correlation scan (IC-scan) technique to characterize the optical nonlinearities of scattering media |
title_fullStr | Intensity correlation scan (IC-scan) technique to characterize the optical nonlinearities of scattering media |
title_full_unstemmed | Intensity correlation scan (IC-scan) technique to characterize the optical nonlinearities of scattering media |
title_short | Intensity correlation scan (IC-scan) technique to characterize the optical nonlinearities of scattering media |
title_sort | intensity correlation scan ic scan technique to characterize the optical nonlinearities of scattering media |
url | https://doi.org/10.1038/s41598-023-34486-0 |
work_keys_str_mv | AT marianajbcrispim intensitycorrelationscanicscantechniquetocharacterizetheopticalnonlinearitiesofscatteringmedia AT ciceracspereira intensitycorrelationscanicscantechniquetocharacterizetheopticalnonlinearitiesofscatteringmedia AT nathaliatcoliveira intensitycorrelationscanicscantechniquetocharacterizetheopticalnonlinearitiesofscatteringmedia AT martinechevrollier intensitycorrelationscanicscantechniquetocharacterizetheopticalnonlinearitiesofscatteringmedia AT rafaeladeoliveira intensitycorrelationscanicscantechniquetocharacterizetheopticalnonlinearitiesofscatteringmedia AT welitonsmartins intensitycorrelationscanicscantechniquetocharacterizetheopticalnonlinearitiesofscatteringmedia AT albertsreyna intensitycorrelationscanicscantechniquetocharacterizetheopticalnonlinearitiesofscatteringmedia |