Capture at the single cell level of metabolic modules distinguishing aggressive and indolent glioblastoma cells

Abstract Glioblastoma cell ability to adapt their functioning to microenvironment changes is a source of the extensive intra-tumor heterogeneity characteristic of this devastating malignant brain tumor. A systemic view of the metabolic pathways underlying glioblastoma cell functioning states is lack...

Full description

Bibliographic Details
Main Authors: Mirca S. Saurty-Seerunghen, Léa Bellenger, Elias A. El-Habr, Virgile Delaunay, Delphine Garnier, Hervé Chneiweiss, Christophe Antoniewski, Ghislaine Morvan-Dubois, Marie-Pierre Junier
Format: Article
Language:English
Published: BMC 2019-10-01
Series:Acta Neuropathologica Communications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s40478-019-0819-y
_version_ 1818230451843629056
author Mirca S. Saurty-Seerunghen
Léa Bellenger
Elias A. El-Habr
Virgile Delaunay
Delphine Garnier
Hervé Chneiweiss
Christophe Antoniewski
Ghislaine Morvan-Dubois
Marie-Pierre Junier
author_facet Mirca S. Saurty-Seerunghen
Léa Bellenger
Elias A. El-Habr
Virgile Delaunay
Delphine Garnier
Hervé Chneiweiss
Christophe Antoniewski
Ghislaine Morvan-Dubois
Marie-Pierre Junier
author_sort Mirca S. Saurty-Seerunghen
collection DOAJ
description Abstract Glioblastoma cell ability to adapt their functioning to microenvironment changes is a source of the extensive intra-tumor heterogeneity characteristic of this devastating malignant brain tumor. A systemic view of the metabolic pathways underlying glioblastoma cell functioning states is lacking. We analyzed public single cell RNA-sequencing data from glioblastoma surgical resections, which offer the closest available view of tumor cell heterogeneity as encountered at the time of patients’ diagnosis. Unsupervised analyses revealed that information dispersed throughout the cell transcript repertoires encoded the identity of each tumor and masked information related to cell functioning states. Data reduction based on an experimentally-defined signature of transcription factors overcame this hurdle. It allowed cell grouping according to their tumorigenic potential, regardless of their tumor of origin. The approach relevance was validated using independent datasets of glioblastoma cell and tissue transcriptomes, patient-derived cell lines and orthotopic xenografts. Overexpression of genes coding for amino acid and lipid metabolism enzymes involved in anti-oxidative, energetic and cell membrane processes characterized cells with high tumorigenic potential. Modeling of their expression network highlighted the very long chain polyunsaturated fatty acid synthesis pathway at the core of the network. Expression of its most downstream enzymatic component, ELOVL2, was associated with worsened patient survival, and required for cell tumorigenic properties in vivo. Our results demonstrate the power of signature-driven analyses of single cell transcriptomes to obtain an integrated view of metabolic pathways at play within the heterogeneous cell landscape of patient tumors.
first_indexed 2024-12-12T10:34:43Z
format Article
id doaj.art-732dd8ed93614f5eb34573125ed00532
institution Directory Open Access Journal
issn 2051-5960
language English
last_indexed 2024-12-12T10:34:43Z
publishDate 2019-10-01
publisher BMC
record_format Article
series Acta Neuropathologica Communications
spelling doaj.art-732dd8ed93614f5eb34573125ed005322022-12-22T00:27:15ZengBMCActa Neuropathologica Communications2051-59602019-10-017111610.1186/s40478-019-0819-yCapture at the single cell level of metabolic modules distinguishing aggressive and indolent glioblastoma cellsMirca S. Saurty-Seerunghen0Léa Bellenger1Elias A. El-Habr2Virgile Delaunay3Delphine Garnier4Hervé Chneiweiss5Christophe Antoniewski6Ghislaine Morvan-Dubois7Marie-Pierre Junier8CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS, Team glial plasticity and neurooncologyARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris SeineCNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS, Team glial plasticity and neurooncologyCNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS, Team glial plasticity and neurooncologyCell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, Sorbonne Université, INSERM UMRS 1138CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS, Team glial plasticity and neurooncologyARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris SeineCNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS, Team glial plasticity and neurooncologyCNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS, Team glial plasticity and neurooncologyAbstract Glioblastoma cell ability to adapt their functioning to microenvironment changes is a source of the extensive intra-tumor heterogeneity characteristic of this devastating malignant brain tumor. A systemic view of the metabolic pathways underlying glioblastoma cell functioning states is lacking. We analyzed public single cell RNA-sequencing data from glioblastoma surgical resections, which offer the closest available view of tumor cell heterogeneity as encountered at the time of patients’ diagnosis. Unsupervised analyses revealed that information dispersed throughout the cell transcript repertoires encoded the identity of each tumor and masked information related to cell functioning states. Data reduction based on an experimentally-defined signature of transcription factors overcame this hurdle. It allowed cell grouping according to their tumorigenic potential, regardless of their tumor of origin. The approach relevance was validated using independent datasets of glioblastoma cell and tissue transcriptomes, patient-derived cell lines and orthotopic xenografts. Overexpression of genes coding for amino acid and lipid metabolism enzymes involved in anti-oxidative, energetic and cell membrane processes characterized cells with high tumorigenic potential. Modeling of their expression network highlighted the very long chain polyunsaturated fatty acid synthesis pathway at the core of the network. Expression of its most downstream enzymatic component, ELOVL2, was associated with worsened patient survival, and required for cell tumorigenic properties in vivo. Our results demonstrate the power of signature-driven analyses of single cell transcriptomes to obtain an integrated view of metabolic pathways at play within the heterogeneous cell landscape of patient tumors.http://link.springer.com/article/10.1186/s40478-019-0819-yGliomaComputational modelingscRNA-seqPUFAElongase
spellingShingle Mirca S. Saurty-Seerunghen
Léa Bellenger
Elias A. El-Habr
Virgile Delaunay
Delphine Garnier
Hervé Chneiweiss
Christophe Antoniewski
Ghislaine Morvan-Dubois
Marie-Pierre Junier
Capture at the single cell level of metabolic modules distinguishing aggressive and indolent glioblastoma cells
Acta Neuropathologica Communications
Glioma
Computational modeling
scRNA-seq
PUFA
Elongase
title Capture at the single cell level of metabolic modules distinguishing aggressive and indolent glioblastoma cells
title_full Capture at the single cell level of metabolic modules distinguishing aggressive and indolent glioblastoma cells
title_fullStr Capture at the single cell level of metabolic modules distinguishing aggressive and indolent glioblastoma cells
title_full_unstemmed Capture at the single cell level of metabolic modules distinguishing aggressive and indolent glioblastoma cells
title_short Capture at the single cell level of metabolic modules distinguishing aggressive and indolent glioblastoma cells
title_sort capture at the single cell level of metabolic modules distinguishing aggressive and indolent glioblastoma cells
topic Glioma
Computational modeling
scRNA-seq
PUFA
Elongase
url http://link.springer.com/article/10.1186/s40478-019-0819-y
work_keys_str_mv AT mircassaurtyseerunghen captureatthesinglecelllevelofmetabolicmodulesdistinguishingaggressiveandindolentglioblastomacells
AT leabellenger captureatthesinglecelllevelofmetabolicmodulesdistinguishingaggressiveandindolentglioblastomacells
AT eliasaelhabr captureatthesinglecelllevelofmetabolicmodulesdistinguishingaggressiveandindolentglioblastomacells
AT virgiledelaunay captureatthesinglecelllevelofmetabolicmodulesdistinguishingaggressiveandindolentglioblastomacells
AT delphinegarnier captureatthesinglecelllevelofmetabolicmodulesdistinguishingaggressiveandindolentglioblastomacells
AT hervechneiweiss captureatthesinglecelllevelofmetabolicmodulesdistinguishingaggressiveandindolentglioblastomacells
AT christopheantoniewski captureatthesinglecelllevelofmetabolicmodulesdistinguishingaggressiveandindolentglioblastomacells
AT ghislainemorvandubois captureatthesinglecelllevelofmetabolicmodulesdistinguishingaggressiveandindolentglioblastomacells
AT mariepierrejunier captureatthesinglecelllevelofmetabolicmodulesdistinguishingaggressiveandindolentglioblastomacells