Basic features of the pion valence-quark distribution function
The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed vi...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2014-10-01
|
Series: | Physics Letters B |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0370269314005760 |
_version_ | 1818544696602918912 |
---|---|
author | Lei Chang Cédric Mezrag Hervé Moutarde Craig D. Roberts Jose Rodríguez-Quintero Peter C. Tandy |
author_facet | Lei Chang Cédric Mezrag Hervé Moutarde Craig D. Roberts Jose Rodríguez-Quintero Peter C. Tandy |
author_sort | Lei Chang |
collection | DOAJ |
description | The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables a realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, qπ(x); namely, at a characteristic hadronic scale, qπ(x)∼(1−x)2 for x≳0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum. |
first_indexed | 2024-12-11T22:51:48Z |
format | Article |
id | doaj.art-7332b667fec24725b3338f48736d6abd |
institution | Directory Open Access Journal |
issn | 0370-2693 1873-2445 |
language | English |
last_indexed | 2024-12-11T22:51:48Z |
publishDate | 2014-10-01 |
publisher | Elsevier |
record_format | Article |
series | Physics Letters B |
spelling | doaj.art-7332b667fec24725b3338f48736d6abd2022-12-22T00:47:24ZengElsevierPhysics Letters B0370-26931873-24452014-10-01737C232910.1016/j.physletb.2014.08.009Basic features of the pion valence-quark distribution functionLei Chang0Cédric Mezrag1Hervé Moutarde2Craig D. Roberts3Jose Rodríguez-Quintero4Peter C. Tandy5CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, AustraliaCentre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, FranceCentre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, FrancePhysics Division, Argonne National Laboratory, Argonne, IL 60439, USADepartamento de Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva E-21071, SpainCenter for Nuclear Research, Department of Physics, Kent State University, Kent, OH 44242, USAThe impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables a realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, qπ(x); namely, at a characteristic hadronic scale, qπ(x)∼(1−x)2 for x≳0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.http://www.sciencedirect.com/science/article/pii/S0370269314005760Deep inelastic scatteringDrell–Yan processDynamical chiral symmetry breakingDyson–Schwinger equationsπ-mesonParton distribution functions |
spellingShingle | Lei Chang Cédric Mezrag Hervé Moutarde Craig D. Roberts Jose Rodríguez-Quintero Peter C. Tandy Basic features of the pion valence-quark distribution function Physics Letters B Deep inelastic scattering Drell–Yan process Dynamical chiral symmetry breaking Dyson–Schwinger equations π-meson Parton distribution functions |
title | Basic features of the pion valence-quark distribution function |
title_full | Basic features of the pion valence-quark distribution function |
title_fullStr | Basic features of the pion valence-quark distribution function |
title_full_unstemmed | Basic features of the pion valence-quark distribution function |
title_short | Basic features of the pion valence-quark distribution function |
title_sort | basic features of the pion valence quark distribution function |
topic | Deep inelastic scattering Drell–Yan process Dynamical chiral symmetry breaking Dyson–Schwinger equations π-meson Parton distribution functions |
url | http://www.sciencedirect.com/science/article/pii/S0370269314005760 |
work_keys_str_mv | AT leichang basicfeaturesofthepionvalencequarkdistributionfunction AT cedricmezrag basicfeaturesofthepionvalencequarkdistributionfunction AT hervemoutarde basicfeaturesofthepionvalencequarkdistributionfunction AT craigdroberts basicfeaturesofthepionvalencequarkdistributionfunction AT joserodriguezquintero basicfeaturesofthepionvalencequarkdistributionfunction AT peterctandy basicfeaturesofthepionvalencequarkdistributionfunction |