Basic features of the pion valence-quark distribution function

The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed vi...

Full description

Bibliographic Details
Main Authors: Lei Chang, Cédric Mezrag, Hervé Moutarde, Craig D. Roberts, Jose Rodríguez-Quintero, Peter C. Tandy
Format: Article
Language:English
Published: Elsevier 2014-10-01
Series:Physics Letters B
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269314005760
_version_ 1818544696602918912
author Lei Chang
Cédric Mezrag
Hervé Moutarde
Craig D. Roberts
Jose Rodríguez-Quintero
Peter C. Tandy
author_facet Lei Chang
Cédric Mezrag
Hervé Moutarde
Craig D. Roberts
Jose Rodríguez-Quintero
Peter C. Tandy
author_sort Lei Chang
collection DOAJ
description The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables a realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, qπ(x); namely, at a characteristic hadronic scale, qπ(x)∼(1−x)2 for x≳0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.
first_indexed 2024-12-11T22:51:48Z
format Article
id doaj.art-7332b667fec24725b3338f48736d6abd
institution Directory Open Access Journal
issn 0370-2693
1873-2445
language English
last_indexed 2024-12-11T22:51:48Z
publishDate 2014-10-01
publisher Elsevier
record_format Article
series Physics Letters B
spelling doaj.art-7332b667fec24725b3338f48736d6abd2022-12-22T00:47:24ZengElsevierPhysics Letters B0370-26931873-24452014-10-01737C232910.1016/j.physletb.2014.08.009Basic features of the pion valence-quark distribution functionLei Chang0Cédric Mezrag1Hervé Moutarde2Craig D. Roberts3Jose Rodríguez-Quintero4Peter C. Tandy5CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, AustraliaCentre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, FranceCentre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, FrancePhysics Division, Argonne National Laboratory, Argonne, IL 60439, USADepartamento de Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva E-21071, SpainCenter for Nuclear Research, Department of Physics, Kent State University, Kent, OH 44242, USAThe impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables a realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, qπ(x); namely, at a characteristic hadronic scale, qπ(x)∼(1−x)2 for x≳0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.http://www.sciencedirect.com/science/article/pii/S0370269314005760Deep inelastic scatteringDrell–Yan processDynamical chiral symmetry breakingDyson–Schwinger equationsπ-mesonParton distribution functions
spellingShingle Lei Chang
Cédric Mezrag
Hervé Moutarde
Craig D. Roberts
Jose Rodríguez-Quintero
Peter C. Tandy
Basic features of the pion valence-quark distribution function
Physics Letters B
Deep inelastic scattering
Drell–Yan process
Dynamical chiral symmetry breaking
Dyson–Schwinger equations
π-meson
Parton distribution functions
title Basic features of the pion valence-quark distribution function
title_full Basic features of the pion valence-quark distribution function
title_fullStr Basic features of the pion valence-quark distribution function
title_full_unstemmed Basic features of the pion valence-quark distribution function
title_short Basic features of the pion valence-quark distribution function
title_sort basic features of the pion valence quark distribution function
topic Deep inelastic scattering
Drell–Yan process
Dynamical chiral symmetry breaking
Dyson–Schwinger equations
π-meson
Parton distribution functions
url http://www.sciencedirect.com/science/article/pii/S0370269314005760
work_keys_str_mv AT leichang basicfeaturesofthepionvalencequarkdistributionfunction
AT cedricmezrag basicfeaturesofthepionvalencequarkdistributionfunction
AT hervemoutarde basicfeaturesofthepionvalencequarkdistributionfunction
AT craigdroberts basicfeaturesofthepionvalencequarkdistributionfunction
AT joserodriguezquintero basicfeaturesofthepionvalencequarkdistributionfunction
AT peterctandy basicfeaturesofthepionvalencequarkdistributionfunction