Dynamic Analysis and Safety Assessment of Ships and Cables during Salvage Operations
The International Maritime Organization (IMO) emphasizes that shipwreck accidents frequently occur at sea and advocates for the safe recovery of shipwrecks. This paper examines the case of the Korean “Sewol” ferry salvage, where two lifting barges were symmetrically utilized to retrieve a substantia...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-08-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/13/16/9420 |
_version_ | 1797585616195551232 |
---|---|
author | Han Zou Shengtao Chen Gang Sun Yongjun Gong |
author_facet | Han Zou Shengtao Chen Gang Sun Yongjun Gong |
author_sort | Han Zou |
collection | DOAJ |
description | The International Maritime Organization (IMO) emphasizes that shipwreck accidents frequently occur at sea and advocates for the safe recovery of shipwrecks. This paper examines the case of the Korean “Sewol” ferry salvage, where two lifting barges were symmetrically utilized to retrieve a substantial shipwreck. The dynamic analysis of the salvage operation is based on the computational fluid dynamics (CFD) approach. The main investigation covers two fundamental physical parameters: the motion response of the lifting barges and shipwreck and the tension response of the lifting cables. Using the parameters of the maximum absolute value (MA), root mean square (RMS), and coefficient of variation (CV), a unified criterion is established to quantitatively evaluate the safety of the salvage operation under different working conditions. The study demonstrates that by carefully considering the enhancement of safety and stability for the three vessels involved in the salvage process and by optimizing the safety performance of the lifting cables, suitable operating windows are determined at wave intervals of (115°, 155°) and (205°, 245°). Under most working conditions, curves illustrating the maximum tensions of lifting cables No. 1–15 and No. 16–30 show a distribution with a “middle part drooping” shape. The placement of connecting cables on the water’s surface at 1.1–1.2 times the salvage spacing between the two lifting barges or the arrangement of inclined lifting cables underwater proves advantageous in constraining the motion response of the three vessels. Reinforcing the lifting cables at the bow and stern ends is recommended. This study presents a methodology for salvaging a shipwreck using two lifting barges, which can be used as a reference for designing related salvage approaches. |
first_indexed | 2024-03-11T00:08:33Z |
format | Article |
id | doaj.art-734aeda2de094d129750b022c2ee1de7 |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-03-11T00:08:33Z |
publishDate | 2023-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-734aeda2de094d129750b022c2ee1de72023-11-19T00:09:31ZengMDPI AGApplied Sciences2076-34172023-08-011316942010.3390/app13169420Dynamic Analysis and Safety Assessment of Ships and Cables during Salvage OperationsHan Zou0Shengtao Chen1Gang Sun2Yongjun Gong3Department of Mechanical Engineering, Dalian Maritime University, Dalian 116026, ChinaDepartment of Mechanical Engineering, Dalian Maritime University, Dalian 116026, ChinaDepartment of Mechanical Engineering, Dalian Maritime University, Dalian 116026, ChinaDepartment of Mechanical Engineering, Dalian Maritime University, Dalian 116026, ChinaThe International Maritime Organization (IMO) emphasizes that shipwreck accidents frequently occur at sea and advocates for the safe recovery of shipwrecks. This paper examines the case of the Korean “Sewol” ferry salvage, where two lifting barges were symmetrically utilized to retrieve a substantial shipwreck. The dynamic analysis of the salvage operation is based on the computational fluid dynamics (CFD) approach. The main investigation covers two fundamental physical parameters: the motion response of the lifting barges and shipwreck and the tension response of the lifting cables. Using the parameters of the maximum absolute value (MA), root mean square (RMS), and coefficient of variation (CV), a unified criterion is established to quantitatively evaluate the safety of the salvage operation under different working conditions. The study demonstrates that by carefully considering the enhancement of safety and stability for the three vessels involved in the salvage process and by optimizing the safety performance of the lifting cables, suitable operating windows are determined at wave intervals of (115°, 155°) and (205°, 245°). Under most working conditions, curves illustrating the maximum tensions of lifting cables No. 1–15 and No. 16–30 show a distribution with a “middle part drooping” shape. The placement of connecting cables on the water’s surface at 1.1–1.2 times the salvage spacing between the two lifting barges or the arrangement of inclined lifting cables underwater proves advantageous in constraining the motion response of the three vessels. Reinforcing the lifting cables at the bow and stern ends is recommended. This study presents a methodology for salvaging a shipwreck using two lifting barges, which can be used as a reference for designing related salvage approaches.https://www.mdpi.com/2076-3417/13/16/9420shipwreck salvagedynamic analysissafety assessmentmotion responsetension responsetwin barges |
spellingShingle | Han Zou Shengtao Chen Gang Sun Yongjun Gong Dynamic Analysis and Safety Assessment of Ships and Cables during Salvage Operations Applied Sciences shipwreck salvage dynamic analysis safety assessment motion response tension response twin barges |
title | Dynamic Analysis and Safety Assessment of Ships and Cables during Salvage Operations |
title_full | Dynamic Analysis and Safety Assessment of Ships and Cables during Salvage Operations |
title_fullStr | Dynamic Analysis and Safety Assessment of Ships and Cables during Salvage Operations |
title_full_unstemmed | Dynamic Analysis and Safety Assessment of Ships and Cables during Salvage Operations |
title_short | Dynamic Analysis and Safety Assessment of Ships and Cables during Salvage Operations |
title_sort | dynamic analysis and safety assessment of ships and cables during salvage operations |
topic | shipwreck salvage dynamic analysis safety assessment motion response tension response twin barges |
url | https://www.mdpi.com/2076-3417/13/16/9420 |
work_keys_str_mv | AT hanzou dynamicanalysisandsafetyassessmentofshipsandcablesduringsalvageoperations AT shengtaochen dynamicanalysisandsafetyassessmentofshipsandcablesduringsalvageoperations AT gangsun dynamicanalysisandsafetyassessmentofshipsandcablesduringsalvageoperations AT yongjungong dynamicanalysisandsafetyassessmentofshipsandcablesduringsalvageoperations |