Liver lipid peroxidation and antioxidant capacity in cerulein-induced acute pancreatitis

The aim of this study was to evaluate the role of oxidative damage in pancreatitis-induced hepatic injury. Thirty-five rats were divided into five groups (each of 7 rats): control, cerulein (100 µg/kg body weight), cerulein and pentoxifylline (12 mg/kg body weight), cerulein plus L-NAME (10 mg/kg bo...

Full description

Bibliographic Details
Main Authors: K. Batcioglu, M. Gul, A.B. Uyumlu, M. Esrefoglu
Format: Article
Language:English
Published: Associação Brasileira de Divulgação Científica 2009-09-01
Series:Brazilian Journal of Medical and Biological Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2009000900001
Description
Summary:The aim of this study was to evaluate the role of oxidative damage in pancreatitis-induced hepatic injury. Thirty-five rats were divided into five groups (each of 7 rats): control, cerulein (100 µg/kg body weight), cerulein and pentoxifylline (12 mg/kg body weight), cerulein plus L-NAME (10 mg/kg body weight) and cerulein plus L-arginine (160 mg/kg body weight). The degree of hepatic cell degeneration differed significantly between groups. Mean malondialdehyde levels were 7.00 ± 2.29, 20.89 ± 10.13, 11.52 ± 4.60, 18.69 ± 8.56, and 8.58 ± 3.68 nmol/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively. Mean catalase activity was 3.20 ± 0.83, 1.09 ± 0.35, 2.05 ± 0.91, 1.70 ± 0.60, and 2.85 ± 0.47 U/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively, and mean glutathione peroxidase activity was 0.72 ± 0.25, 0.33 ± 0.09, 0.37 ± 0.04, 0.34 ± 0.07 and 0.42 ± 0.1 U/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively. Cerulein-induced liver damage was accompanied by a significant increase in tissue malondialdehyde levels (P < 0.05) and a significant decrease in catalase (P < 0.05) and GPx activities (P < 0.05). L-arginine and pentoxifylline, but not L-NAME, protected against this damage. Oxidative injury plays an important role not only in the pathogenesis of AP but also in pancreatitis-induced hepatic damage.
ISSN:0100-879X
1414-431X