On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space

Let for s &#8712; {0, 1, ...,m+ 1} (m &#8805; 2) , IR(s)0,m+1 be the space of s-vectors in the Clifford algebra IR0,m+1 constructed over the quadratic vector space IR0,m+1 and let r, p, q, &#8712; IN be such that 0 &#8804; r &#8804; m + 1, p < q and r + 2q &#8804; m + 1. T...

Full description

Bibliographic Details
Main Author: Richard Delanghe
Format: Article
Language:English
Published: Universidad de La Frontera 2010-01-01
Series:Cubo
Subjects:
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200010
_version_ 1818842341596725248
author Richard Delanghe
author_facet Richard Delanghe
author_sort Richard Delanghe
collection DOAJ
description Let for s &#8712; {0, 1, ...,m+ 1} (m &#8805; 2) , IR(s)0,m+1 be the space of s-vectors in the Clifford algebra IR0,m+1 constructed over the quadratic vector space IR0,m+1 and let r, p, q, &#8712; IN be such that 0 &#8804; r &#8804; m + 1, p < q and r + 2q &#8804; m + 1. The associated linear system of first order partial differential equations derived from the equation &#8706;xW = 0 where W is IR(r,p,q)0,m+1 = &#8721;q j=p &#8853;IR(r+2j)0,m+1 -valued and &#8706;x is the Dirac operator in IRm+1, is called a generalized Moisil-Théodoresco system of type (r, p, q) in IRm+1. For k &#8712; N, k &#8805; 1,MT+(m+ 1; k; IR(r,p,q)0,m+1), denotes the space of IR(r,p,q)0,m+1-valued homogeneous polynomials Wc of degree k in IRm+1 satisfying &#8706;xWx = 0. A characterization of Wk&#8712; MT+(m + 1; k;IR(r,p,q)0,m+1) is given in terms of a harmonic potential Hk+1 belonging to a subclass of IR(r,p,q)0,m -valued solid harmonics of degree (k + 1) in IRm+1. Furthermore, it is proved that each Wk&#8712; MT+(m+ 1; k; IR(r,p,q)0,m+1) admits a primitive Wk+1 &#8712; MT+(m+ 1; k + 1; IR(r,p,q)0,m+1). Special attention is paid to the lower dimensional cases IR³ and IR4. In particular, a method is developed for constructing bases for the spaces MT+(4; k; IR(r,p,q)0,4), r being even.<br>Para s &#8712; {0, 1, ...,m+ 1} (m &#8805; 2) , IR(s)0,m+1 el espacio de los s-vectors en el algebra de Clifford IR0,m+1 construida sobre el espacio de vectores cuadráticos IR0,m+1 sea r, p, q, &#8712; IN tal que 0 &#8804; r &#8804; m + 1, p < q. El sistema lineal asociado de ecuaciones diferenciales parciales de primer orden derivado de la ecuaci´on &#8706;xW = 0 donde W es IR(r,p,q)0,m+1 = &#8721;q j=p &#8853;IR(r+2j)0,m+1 1-valuada y &#8706;x es el operador de Dirac en IRm+1, es llamado un sistema de Moisil-Théodoresco generalizado de tipo (r, p, q) en IRm+1. Para k &#8712; N, k &#8805; 1,MT+(m+ 1; k; IR(r,p,q)0,m+1), denota el espacio de polinomios homogéneosWk IR(r,p,q)0,m+1- valuados de grado k en IRm+1. satisfaciendo &#8706;xWx = 0. Una caracterización de Wk&#8712; MT+(m+1; k; IR(r,p,q)0,m+1) es dada en términos de un potencial armónico Hk+1 perteneciendo a una subclase de armónicos consistentes IR(r,p,q)0,m -valuados de grado (k + 1) in IRm+1. Además es probado que todo Wk&#8712; MT+(m + 1; k; IR(r,p,q)0,m+1) admite una primitiva Wk+1 &#8712; MT+(m + 1; k + 1; IR(r,p,q)0,m+1). Una especial atención es dada a los casos de dimensión baja IR³ y IR4. En particular, un metodo es desarrollado para construir bases para espaciosMT+(4; k; IR(r,p,q)0,4 ), r siendo par.
first_indexed 2024-12-19T04:40:26Z
format Article
id doaj.art-7366d30464dd4840a023c1b23ba9323c
institution Directory Open Access Journal
issn 0716-7776
0719-0646
language English
last_indexed 2024-12-19T04:40:26Z
publishDate 2010-01-01
publisher Universidad de La Frontera
record_format Article
series Cubo
spelling doaj.art-7366d30464dd4840a023c1b23ba9323c2022-12-21T20:35:37ZengUniversidad de La FronteraCubo0716-77760719-06462010-01-01122145167On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean spaceRichard DelangheLet for s &#8712; {0, 1, ...,m+ 1} (m &#8805; 2) , IR(s)0,m+1 be the space of s-vectors in the Clifford algebra IR0,m+1 constructed over the quadratic vector space IR0,m+1 and let r, p, q, &#8712; IN be such that 0 &#8804; r &#8804; m + 1, p < q and r + 2q &#8804; m + 1. The associated linear system of first order partial differential equations derived from the equation &#8706;xW = 0 where W is IR(r,p,q)0,m+1 = &#8721;q j=p &#8853;IR(r+2j)0,m+1 -valued and &#8706;x is the Dirac operator in IRm+1, is called a generalized Moisil-Théodoresco system of type (r, p, q) in IRm+1. For k &#8712; N, k &#8805; 1,MT+(m+ 1; k; IR(r,p,q)0,m+1), denotes the space of IR(r,p,q)0,m+1-valued homogeneous polynomials Wc of degree k in IRm+1 satisfying &#8706;xWx = 0. A characterization of Wk&#8712; MT+(m + 1; k;IR(r,p,q)0,m+1) is given in terms of a harmonic potential Hk+1 belonging to a subclass of IR(r,p,q)0,m -valued solid harmonics of degree (k + 1) in IRm+1. Furthermore, it is proved that each Wk&#8712; MT+(m+ 1; k; IR(r,p,q)0,m+1) admits a primitive Wk+1 &#8712; MT+(m+ 1; k + 1; IR(r,p,q)0,m+1). Special attention is paid to the lower dimensional cases IR³ and IR4. In particular, a method is developed for constructing bases for the spaces MT+(4; k; IR(r,p,q)0,4), r being even.<br>Para s &#8712; {0, 1, ...,m+ 1} (m &#8805; 2) , IR(s)0,m+1 el espacio de los s-vectors en el algebra de Clifford IR0,m+1 construida sobre el espacio de vectores cuadráticos IR0,m+1 sea r, p, q, &#8712; IN tal que 0 &#8804; r &#8804; m + 1, p < q. El sistema lineal asociado de ecuaciones diferenciales parciales de primer orden derivado de la ecuaci´on &#8706;xW = 0 donde W es IR(r,p,q)0,m+1 = &#8721;q j=p &#8853;IR(r+2j)0,m+1 1-valuada y &#8706;x es el operador de Dirac en IRm+1, es llamado un sistema de Moisil-Théodoresco generalizado de tipo (r, p, q) en IRm+1. Para k &#8712; N, k &#8805; 1,MT+(m+ 1; k; IR(r,p,q)0,m+1), denota el espacio de polinomios homogéneosWk IR(r,p,q)0,m+1- valuados de grado k en IRm+1. satisfaciendo &#8706;xWx = 0. Una caracterización de Wk&#8712; MT+(m+1; k; IR(r,p,q)0,m+1) es dada en términos de un potencial armónico Hk+1 perteneciendo a una subclase de armónicos consistentes IR(r,p,q)0,m -valuados de grado (k + 1) in IRm+1. Además es probado que todo Wk&#8712; MT+(m + 1; k; IR(r,p,q)0,m+1) admite una primitiva Wk+1 &#8712; MT+(m + 1; k + 1; IR(r,p,q)0,m+1). Una especial atención es dada a los casos de dimensión baja IR³ y IR4. En particular, un metodo es desarrollado para construir bases para espaciosMT+(4; k; IR(r,p,q)0,4 ), r siendo par.http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200010Clifford analysisMoisil-Théodoresco systemsconjugate harmonic funtionsharmonic potentialspolynomial bases
spellingShingle Richard Delanghe
On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
Cubo
Clifford analysis
Moisil-Théodoresco systems
conjugate harmonic funtions
harmonic potentials
polynomial bases
title On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
title_full On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
title_fullStr On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
title_full_unstemmed On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
title_short On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
title_sort on homogeneous polynomial solutions of generalized moisil theodoresco systems in euclidean space
topic Clifford analysis
Moisil-Théodoresco systems
conjugate harmonic funtions
harmonic potentials
polynomial bases
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200010
work_keys_str_mv AT richarddelanghe onhomogeneouspolynomialsolutionsofgeneralizedmoisiltheodorescosystemsineuclideanspace