Machine learning brings new insights for reducing salinization disaster

This study constructs a machine learning system to examine the predictors of soil salinity in deserts. We conclude that soil humidity and subterranean CO2 concentration are two leading controls of soil salinity—respectively explain 71.33%, 13.83% in the data. The (R2, root-mean-square error, RPD) va...

Full description

Bibliographic Details
Main Authors: Peng An, Wenfeng Wang, Xi Chen, Zhikai Zhuang, Lujie Cui
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-02-01
Series:Frontiers in Earth Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/feart.2023.1130070/full
Description
Summary:This study constructs a machine learning system to examine the predictors of soil salinity in deserts. We conclude that soil humidity and subterranean CO2 concentration are two leading controls of soil salinity—respectively explain 71.33%, 13.83% in the data. The (R2, root-mean-square error, RPD) values at the training stage, validation stage and testing stage are (0.9924, 0.0123, and 8.282), (0.9931, 0.0872, and 7.0918), (0.9826, 0.1079, and 6.0418), respectively. Based on the underlining mechanisms, we conjecture that subterranean CO2 sequestration could reduce salinization disaster in deserts.
ISSN:2296-6463