Exploring Microstructure, Wear Resistance, and Electrochemical Properties of AlSi10Mg Alloy Fabricated Using Spark Plasma Sintering

Al-Si-Mg alloy has excellent casting performance due to its high silicon content, but the coarse eutectic silicon phase can lead to a decrease in its mechanical properties. Samples of AlSi10Mg alloy were prepared by using a spark plasma sintering method, and it was found that sintering temperature h...

Full description

Bibliographic Details
Main Authors: Guangfei Rong, Wenjie Xin, Minxu Zhou, Tengfei Ma, Xiaohong Wang, Xiaoying Jiang
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/23/7394
Description
Summary:Al-Si-Mg alloy has excellent casting performance due to its high silicon content, but the coarse eutectic silicon phase can lead to a decrease in its mechanical properties. Samples of AlSi10Mg alloy were prepared by using a spark plasma sintering method, and it was found that sintering temperature has a significant impact on the grain size, eutectic silicon size and wear and corrosion properties after heat treatment. At a sintering temperature of 525 °C, the alloy exhibits the best wear performance with an average friction coefficient of 0.29. This is attributed to the uniform precipitation of fine eutectic silicon phases, significantly improving wear resistance and establishing adhesive wear as the wear mechanism of AlSi10Mg alloy at room temperature. The electrochemical performance of AlSi10Mg sintered at 500 °C is the best, with I<sub>corr</sub> and E<sub>corr</sub> being 1.33 × 10<sup>−6</sup> A·cm<sup>−2</sup> and −0.57 V, respectively. This is attributed to the refinement of grain size and eutectic silicon size, as well as the appropriate Si volume fraction. Therefore, optimizing the sintering temperature can effectively improve the performance of AlSi10Mg alloy.
ISSN:1996-1944