Application of neural networks in the prediction of the circular economy level in agri-food chains

The objective of the work is to predict the level of circular economy in the agri-food chain through an empirical neural network approach. The research methodology includes the training of a neural network to predict the level of 128 circular economy in two agri-food chains. The novelty of this work...

Full description

Bibliographic Details
Main Authors: E. G. Muñoz-Grillo, Neyfe Sablón-Cossío, Sebastiana del Monserrate Ruiz-Cedeño, Ana Julia Acevedo-Urquiaga, D. A. Verduga-Alcívar, D. Marrero-González, Karel Diéguez-Santana
Format: Article
Language:English
Published: University of Novi Sad, Faculty of Technical Sciences 2024-03-01
Series:International Journal of Industrial Engineering and Management
Subjects:
Online Access:http://www.ijiemjournal.uns.ac.rs/images/journal/volume15/IJIEM_347.pdf
_version_ 1797266498617606144
author E. G. Muñoz-Grillo
Neyfe Sablón-Cossío
Sebastiana del Monserrate Ruiz-Cedeño
Ana Julia Acevedo-Urquiaga
D. A. Verduga-Alcívar
D. Marrero-González
Karel Diéguez-Santana
author_facet E. G. Muñoz-Grillo
Neyfe Sablón-Cossío
Sebastiana del Monserrate Ruiz-Cedeño
Ana Julia Acevedo-Urquiaga
D. A. Verduga-Alcívar
D. Marrero-González
Karel Diéguez-Santana
author_sort E. G. Muñoz-Grillo
collection DOAJ
description The objective of the work is to predict the level of circular economy in the agri-food chain through an empirical neural network approach. The research methodology includes the training of a neural network to predict the level of 128 circular economy in two agri-food chains. The novelty of this work lies in the possibility of defining in advance circular strategies based on the prediction of the level of circular economy. Historical data on the level of circular economy are compared with those predicted by neural networks. As a result, it is shown that if the weights of the circular economy level variables are not homogeneous, the procedure has a lower correlation value which, however, remains significant.
first_indexed 2024-04-25T01:01:39Z
format Article
id doaj.art-7377e8af976842b0b3ccf6d49502d779
institution Directory Open Access Journal
issn 2217-2661
2683-345X
language English
last_indexed 2024-04-25T01:01:39Z
publishDate 2024-03-01
publisher University of Novi Sad, Faculty of Technical Sciences
record_format Article
series International Journal of Industrial Engineering and Management
spelling doaj.art-7377e8af976842b0b3ccf6d49502d7792024-03-10T22:50:41ZengUniversity of Novi Sad, Faculty of Technical SciencesInternational Journal of Industrial Engineering and Management2217-26612683-345X2024-03-011514558http://doi.org/10.24867/IJIEM-2024-1-347347Application of neural networks in the prediction of the circular economy level in agri-food chainsE. G. Muñoz-Grillo0Neyfe Sablón-Cossío1Sebastiana del Monserrate Ruiz-Cedeño2Ana Julia Acevedo-Urquiaga3D. A. Verduga-Alcívar4D. Marrero-González5Karel Diéguez-Santana6Universidad Técnica de Manabí, Faculty of Basic Sciences, Portoviejo, Ecuador; Doctoral students from the National University of Tumbes, PeruUniversidad Técnica de Manabí, Grupo de Producción y Servicios, Faculty of Postgraduate, Portoviejo, EcuadorUniversidad Técnica de Manabí, Faculty of Administrative and Economic Sciences, Portoviejo, Ecuador; Doctoral students from the National University of Tumbes, Peru;Fundación Universitaria San Mateo, Industrial Engineering Program, Bogotá, ColombiaUniversidad Técnica de Manabí, Faculty of Basic Sciences, Portoviejo, Ecuador; Doctoral students from the National University of Tumbes, PeruUniversidad Técnica de Manabí, Portoviejo, EcuadorUniversidad Regional Amazónica, IKIAM, EcuadorThe objective of the work is to predict the level of circular economy in the agri-food chain through an empirical neural network approach. The research methodology includes the training of a neural network to predict the level of 128 circular economy in two agri-food chains. The novelty of this work lies in the possibility of defining in advance circular strategies based on the prediction of the level of circular economy. Historical data on the level of circular economy are compared with those predicted by neural networks. As a result, it is shown that if the weights of the circular economy level variables are not homogeneous, the procedure has a lower correlation value which, however, remains significant.http://www.ijiemjournal.uns.ac.rs/images/journal/volume15/IJIEM_347.pdfneural networkscircular economyagri-food chainscircular economy level
spellingShingle E. G. Muñoz-Grillo
Neyfe Sablón-Cossío
Sebastiana del Monserrate Ruiz-Cedeño
Ana Julia Acevedo-Urquiaga
D. A. Verduga-Alcívar
D. Marrero-González
Karel Diéguez-Santana
Application of neural networks in the prediction of the circular economy level in agri-food chains
International Journal of Industrial Engineering and Management
neural networks
circular economy
agri-food chains
circular economy level
title Application of neural networks in the prediction of the circular economy level in agri-food chains
title_full Application of neural networks in the prediction of the circular economy level in agri-food chains
title_fullStr Application of neural networks in the prediction of the circular economy level in agri-food chains
title_full_unstemmed Application of neural networks in the prediction of the circular economy level in agri-food chains
title_short Application of neural networks in the prediction of the circular economy level in agri-food chains
title_sort application of neural networks in the prediction of the circular economy level in agri food chains
topic neural networks
circular economy
agri-food chains
circular economy level
url http://www.ijiemjournal.uns.ac.rs/images/journal/volume15/IJIEM_347.pdf
work_keys_str_mv AT egmunozgrillo applicationofneuralnetworksinthepredictionofthecirculareconomylevelinagrifoodchains
AT neyfesabloncossio applicationofneuralnetworksinthepredictionofthecirculareconomylevelinagrifoodchains
AT sebastianadelmonserrateruizcedeno applicationofneuralnetworksinthepredictionofthecirculareconomylevelinagrifoodchains
AT anajuliaacevedourquiaga applicationofneuralnetworksinthepredictionofthecirculareconomylevelinagrifoodchains
AT daverdugaalcivar applicationofneuralnetworksinthepredictionofthecirculareconomylevelinagrifoodchains
AT dmarrerogonzalez applicationofneuralnetworksinthepredictionofthecirculareconomylevelinagrifoodchains
AT kareldieguezsantana applicationofneuralnetworksinthepredictionofthecirculareconomylevelinagrifoodchains