On Homogeneous Combinations of Linear Recurrence Sequences

Let <inline-formula><math display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0&...

Full description

Bibliographic Details
Main Authors: Marie Hubálovská, Štěpán Hubálovský, Eva Trojovská
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/12/2152
_version_ 1827700905611362304
author Marie Hubálovská
Štěpán Hubálovský
Eva Trojovská
author_facet Marie Hubálovská
Štěpán Hubálovský
Eva Trojovská
author_sort Marie Hubálovská
collection DOAJ
description Let <inline-formula><math display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> be the Fibonacci sequence given by <inline-formula><math display="inline"><semantics><mrow><msub><mi>F</mi><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mi>F</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>F</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula>, for <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mrow><msub><mi>F</mi><mn>0</mn></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msub><mi>F</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. There are several interesting identities involving this sequence such as <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>F</mi><mi>n</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>F</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mo>=</mo><msub><mi>F</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>, for all <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula>. In 2012, Chaves, Marques and Togbé proved that if <inline-formula><math display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>G</mi><mi>m</mi></msub><mo>)</mo></mrow><mi>m</mi></msub></semantics></math></inline-formula> is a linear recurrence sequence (under weak assumptions) and <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>G</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mi>s</mi></msubsup><mo>+</mo><mo>⋯</mo><mo>+</mo><msubsup><mi>G</mi><mrow><mi>n</mi><mo>+</mo><mo>ℓ</mo></mrow><mi>s</mi></msubsup><mo>∈</mo><msub><mrow><mo>(</mo><msub><mi>G</mi><mi>m</mi></msub><mo>)</mo></mrow><mi>m</mi></msub></mrow></semantics></math></inline-formula>, for infinitely many positive integers <i>n</i>, then <i>s</i> is bounded by an effectively computable constant depending only on <i>ł</i> and the parameters of <inline-formula><math display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>G</mi><mi>m</mi></msub><mo>)</mo></mrow><mi>m</mi></msub></semantics></math></inline-formula>. In this paper, we shall prove that if <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>x</mi><mo>ℓ</mo></msub><mo>)</mo></mrow></semantics></math></inline-formula> is an integer homogeneous <i>s</i>-degree polynomial (under weak hypotheses) and if <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><mrow><mo>(</mo><msub><mi>G</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>G</mi><mrow><mi>n</mi><mo>+</mo><mo>ℓ</mo></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msub><mrow><mo>(</mo><msub><mi>G</mi><mi>m</mi></msub><mo>)</mo></mrow><mi>m</mi></msub></mrow></semantics></math></inline-formula> for infinitely many positive integers <i>n</i>, then <i>s</i> is bounded by an effectively computable constant depending only on <i>ℓ</i>, the parameters of <inline-formula><math display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>G</mi><mi>m</mi></msub><mo>)</mo></mrow><mi>m</mi></msub></semantics></math></inline-formula> and the coefficients of <i>P</i>.
first_indexed 2024-03-10T14:21:25Z
format Article
id doaj.art-73829ccb11984461ae7aa0ce38d0b625
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T14:21:25Z
publishDate 2020-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-73829ccb11984461ae7aa0ce38d0b6252023-11-20T23:19:56ZengMDPI AGMathematics2227-73902020-12-01812215210.3390/math8122152On Homogeneous Combinations of Linear Recurrence SequencesMarie Hubálovská0Štěpán Hubálovský1Eva Trojovská2Department of Technical Education, Faculty of Education, University of Hradec Králové, 500 03 Hradec Králové, Czech RepublicDepartment of Applied Cybernetics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech RepublicDepartment of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech RepublicLet <inline-formula><math display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> be the Fibonacci sequence given by <inline-formula><math display="inline"><semantics><mrow><msub><mi>F</mi><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mi>F</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>F</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula>, for <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mrow><msub><mi>F</mi><mn>0</mn></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msub><mi>F</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. There are several interesting identities involving this sequence such as <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>F</mi><mi>n</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>F</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mo>=</mo><msub><mi>F</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>, for all <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula>. In 2012, Chaves, Marques and Togbé proved that if <inline-formula><math display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>G</mi><mi>m</mi></msub><mo>)</mo></mrow><mi>m</mi></msub></semantics></math></inline-formula> is a linear recurrence sequence (under weak assumptions) and <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>G</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mi>s</mi></msubsup><mo>+</mo><mo>⋯</mo><mo>+</mo><msubsup><mi>G</mi><mrow><mi>n</mi><mo>+</mo><mo>ℓ</mo></mrow><mi>s</mi></msubsup><mo>∈</mo><msub><mrow><mo>(</mo><msub><mi>G</mi><mi>m</mi></msub><mo>)</mo></mrow><mi>m</mi></msub></mrow></semantics></math></inline-formula>, for infinitely many positive integers <i>n</i>, then <i>s</i> is bounded by an effectively computable constant depending only on <i>ł</i> and the parameters of <inline-formula><math display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>G</mi><mi>m</mi></msub><mo>)</mo></mrow><mi>m</mi></msub></semantics></math></inline-formula>. In this paper, we shall prove that if <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>x</mi><mo>ℓ</mo></msub><mo>)</mo></mrow></semantics></math></inline-formula> is an integer homogeneous <i>s</i>-degree polynomial (under weak hypotheses) and if <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><mrow><mo>(</mo><msub><mi>G</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>G</mi><mrow><mi>n</mi><mo>+</mo><mo>ℓ</mo></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msub><mrow><mo>(</mo><msub><mi>G</mi><mi>m</mi></msub><mo>)</mo></mrow><mi>m</mi></msub></mrow></semantics></math></inline-formula> for infinitely many positive integers <i>n</i>, then <i>s</i> is bounded by an effectively computable constant depending only on <i>ℓ</i>, the parameters of <inline-formula><math display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>G</mi><mi>m</mi></msub><mo>)</mo></mrow><mi>m</mi></msub></semantics></math></inline-formula> and the coefficients of <i>P</i>.https://www.mdpi.com/2227-7390/8/12/2152homogeneous polynomiallinear forms in logarithmslinear recurrence sequence
spellingShingle Marie Hubálovská
Štěpán Hubálovský
Eva Trojovská
On Homogeneous Combinations of Linear Recurrence Sequences
Mathematics
homogeneous polynomial
linear forms in logarithms
linear recurrence sequence
title On Homogeneous Combinations of Linear Recurrence Sequences
title_full On Homogeneous Combinations of Linear Recurrence Sequences
title_fullStr On Homogeneous Combinations of Linear Recurrence Sequences
title_full_unstemmed On Homogeneous Combinations of Linear Recurrence Sequences
title_short On Homogeneous Combinations of Linear Recurrence Sequences
title_sort on homogeneous combinations of linear recurrence sequences
topic homogeneous polynomial
linear forms in logarithms
linear recurrence sequence
url https://www.mdpi.com/2227-7390/8/12/2152
work_keys_str_mv AT mariehubalovska onhomogeneouscombinationsoflinearrecurrencesequences
AT stepanhubalovsky onhomogeneouscombinationsoflinearrecurrencesequences
AT evatrojovska onhomogeneouscombinationsoflinearrecurrencesequences