Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律)
利用素理想和环的零因子技巧,讨论泛复系数代数方程根的规律,得到了抛物复系数代数方程f(x)=(an+bnk)xn+(an-1+bn-1k)xn-1+…+(a1+b1k)x+(a0+b0k)=0(这里虚单位k满足k2=0)的准确解;而对于双曲复系数代数方程f(x)=(an+bnj)xn+(an-1+bn-1j)xn-1+…+(a1+b1j)x+(a0+b0j)=0(这里虚单位j满足j2-1=0),我们将方程转换成方程组,给出了方程的具体解法,并估计了在双曲复数域H中的根的个数....
Main Authors: | , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2002-09-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/zjup/1008-9497.2002.29.5.481-484 |
_version_ | 1797236485349441536 |
---|---|
author | CENZhong-di(岑仲迪) XILi-feng(奚李峰) |
author_facet | CENZhong-di(岑仲迪) XILi-feng(奚李峰) |
author_sort | CENZhong-di(岑仲迪) |
collection | DOAJ |
description | 利用素理想和环的零因子技巧,讨论泛复系数代数方程根的规律,得到了抛物复系数代数方程f(x)=(an+bnk)xn+(an-1+bn-1k)xn-1+…+(a1+b1k)x+(a0+b0k)=0(这里虚单位k满足k2=0)的准确解;而对于双曲复系数代数方程f(x)=(an+bnj)xn+(an-1+bn-1j)xn-1+…+(a1+b1j)x+(a0+b0j)=0(这里虚单位j满足j2-1=0),我们将方程转换成方程组,给出了方程的具体解法,并估计了在双曲复数域H中的根的个数. |
first_indexed | 2024-04-24T17:04:36Z |
format | Article |
id | doaj.art-738a1eea81364b3592e3e82e8dbf00c6 |
institution | Directory Open Access Journal |
issn | 1008-9497 |
language | zho |
last_indexed | 2024-04-24T17:04:36Z |
publishDate | 2002-09-01 |
publisher | Zhejiang University Press |
record_format | Article |
series | Zhejiang Daxue xuebao. Lixue ban |
spelling | doaj.art-738a1eea81364b3592e3e82e8dbf00c62024-03-29T01:58:18ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972002-09-01295481484zjup/1008-9497.2002.29.5.481-484Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律)CENZhong-di(岑仲迪)0XILi-feng(奚李峰)1 1.Department of Mathematics, Zhejiang University, Hangzhou 310028, China( 1.浙江大学数学系,浙江 杭州 310028) 2.Institute of Mathematics, Zhejiang Wanli University, Ningbo 315101, China( 2.浙江万里学院数学研究所,浙江 宁波 315101)利用素理想和环的零因子技巧,讨论泛复系数代数方程根的规律,得到了抛物复系数代数方程f(x)=(an+bnk)xn+(an-1+bn-1k)xn-1+…+(a1+b1k)x+(a0+b0k)=0(这里虚单位k满足k2=0)的准确解;而对于双曲复系数代数方程f(x)=(an+bnj)xn+(an-1+bn-1j)xn-1+…+(a1+b1j)x+(a0+b0j)=0(这里虚单位j满足j2-1=0),我们将方程转换成方程组,给出了方程的具体解法,并估计了在双曲复数域H中的根的个数.https://doi.org/zjup/1008-9497.2002.29.5.481-484平面泛复数代数方程环论素理想零因子 |
spellingShingle | CENZhong-di(岑仲迪) XILi-feng(奚李峰) Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律) Zhejiang Daxue xuebao. Lixue ban 平面泛复数 代数方程 环论 素理想 零因子 |
title | Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律) |
title_full | Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律) |
title_fullStr | Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律) |
title_full_unstemmed | Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律) |
title_short | Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律) |
title_sort | regularity of algebraic equation of generalized complex number 平面泛复数中代数方程根的规律 |
topic | 平面泛复数 代数方程 环论 素理想 零因子 |
url | https://doi.org/zjup/1008-9497.2002.29.5.481-484 |
work_keys_str_mv | AT cenzhongdicénzhòngdí regularityofalgebraicequationofgeneralizedcomplexnumberpíngmiànfànfùshùzhōngdàishùfāngchénggēndeguīlǜ AT xilifengxīlǐfēng regularityofalgebraicequationofgeneralizedcomplexnumberpíngmiànfànfùshùzhōngdàishùfāngchénggēndeguīlǜ |