Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律)

利用素理想和环的零因子技巧,讨论泛复系数代数方程根的规律,得到了抛物复系数代数方程f(x)=(an+bnk)xn+(an-1+bn-1k)xn-1+…+(a1+b1k)x+(a0+b0k)=0(这里虚单位k满足k2=0)的准确解;而对于双曲复系数代数方程f(x)=(an+bnj)xn+(an-1+bn-1j)xn-1+…+(a1+b1j)x+(a0+b0j)=0(这里虚单位j满足j2-1=0),我们将方程转换成方程组,给出了方程的具体解法,并估计了在双曲复数域H中的根的个数....

Full description

Bibliographic Details
Main Authors: CENZhong-di(岑仲迪), XILi-feng(奚李峰)
Format: Article
Language:zho
Published: Zhejiang University Press 2002-09-01
Series:Zhejiang Daxue xuebao. Lixue ban
Subjects:
Online Access:https://doi.org/zjup/1008-9497.2002.29.5.481-484
_version_ 1797236485349441536
author CENZhong-di(岑仲迪)
XILi-feng(奚李峰)
author_facet CENZhong-di(岑仲迪)
XILi-feng(奚李峰)
author_sort CENZhong-di(岑仲迪)
collection DOAJ
description 利用素理想和环的零因子技巧,讨论泛复系数代数方程根的规律,得到了抛物复系数代数方程f(x)=(an+bnk)xn+(an-1+bn-1k)xn-1+…+(a1+b1k)x+(a0+b0k)=0(这里虚单位k满足k2=0)的准确解;而对于双曲复系数代数方程f(x)=(an+bnj)xn+(an-1+bn-1j)xn-1+…+(a1+b1j)x+(a0+b0j)=0(这里虚单位j满足j2-1=0),我们将方程转换成方程组,给出了方程的具体解法,并估计了在双曲复数域H中的根的个数.
first_indexed 2024-04-24T17:04:36Z
format Article
id doaj.art-738a1eea81364b3592e3e82e8dbf00c6
institution Directory Open Access Journal
issn 1008-9497
language zho
last_indexed 2024-04-24T17:04:36Z
publishDate 2002-09-01
publisher Zhejiang University Press
record_format Article
series Zhejiang Daxue xuebao. Lixue ban
spelling doaj.art-738a1eea81364b3592e3e82e8dbf00c62024-03-29T01:58:18ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972002-09-01295481484zjup/1008-9497.2002.29.5.481-484Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律)CENZhong-di(岑仲迪)0XILi-feng(奚李峰)1 1.Department of Mathematics, Zhejiang University, Hangzhou 310028, China( 1.浙江大学数学系,浙江 杭州 310028) 2.Institute of Mathematics, Zhejiang Wanli University, Ningbo 315101, China( 2.浙江万里学院数学研究所,浙江 宁波 315101)利用素理想和环的零因子技巧,讨论泛复系数代数方程根的规律,得到了抛物复系数代数方程f(x)=(an+bnk)xn+(an-1+bn-1k)xn-1+…+(a1+b1k)x+(a0+b0k)=0(这里虚单位k满足k2=0)的准确解;而对于双曲复系数代数方程f(x)=(an+bnj)xn+(an-1+bn-1j)xn-1+…+(a1+b1j)x+(a0+b0j)=0(这里虚单位j满足j2-1=0),我们将方程转换成方程组,给出了方程的具体解法,并估计了在双曲复数域H中的根的个数.https://doi.org/zjup/1008-9497.2002.29.5.481-484平面泛复数代数方程环论素理想零因子
spellingShingle CENZhong-di(岑仲迪)
XILi-feng(奚李峰)
Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律)
Zhejiang Daxue xuebao. Lixue ban
平面泛复数
代数方程
环论
素理想
零因子
title Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律)
title_full Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律)
title_fullStr Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律)
title_full_unstemmed Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律)
title_short Regularity of algebraic equation of generalized complex number(平面泛复数中代数方程根的规律)
title_sort regularity of algebraic equation of generalized complex number 平面泛复数中代数方程根的规律
topic 平面泛复数
代数方程
环论
素理想
零因子
url https://doi.org/zjup/1008-9497.2002.29.5.481-484
work_keys_str_mv AT cenzhongdicénzhòngdí regularityofalgebraicequationofgeneralizedcomplexnumberpíngmiànfànfùshùzhōngdàishùfāngchénggēndeguīlǜ
AT xilifengxīlǐfēng regularityofalgebraicequationofgeneralizedcomplexnumberpíngmiànfànfùshùzhōngdàishùfāngchénggēndeguīlǜ