Hypothalamic Sirt1 regulates food intake in a rodent model system.
Sirt1 is an evolutionarily conserved NAD(+) dependent deacetylase involved in a wide range of processes including cellular differentiation, apoptosis, as well as metabolism, and aging. In this study, we investigated the role of hypothalamic Sirt1 in energy balance. Pharmacological inhibition or siRN...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2009-12-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC2790615?pdf=render |
_version_ | 1811276338431000576 |
---|---|
author | Işin Cakir Mario Perello Omar Lansari Norma J Messier Charles A Vaslet Eduardo A Nillni |
author_facet | Işin Cakir Mario Perello Omar Lansari Norma J Messier Charles A Vaslet Eduardo A Nillni |
author_sort | Işin Cakir |
collection | DOAJ |
description | Sirt1 is an evolutionarily conserved NAD(+) dependent deacetylase involved in a wide range of processes including cellular differentiation, apoptosis, as well as metabolism, and aging. In this study, we investigated the role of hypothalamic Sirt1 in energy balance. Pharmacological inhibition or siRNA mediated knock down of hypothalamic Sirt1 showed to decrease food intake and body weight gain. Central administration of a specific melanocortin antagonist, SHU9119, reversed the anorectic effect of hypothalamic Sirt1 inhibition, suggesting that Sirt1 regulates food intake through the central melanocortin signaling. We also showed that fasting increases hypothalamic Sirt1 expression and decreases FoxO1 (Forkhead transcription factor) acetylation suggesting that Sirt1 regulates the central melanocortin system in a FoxO1 dependent manner. In addition, hypothalamic Sirt1 showed to regulate S6K signaling such that inhibition of the fasting induced Sirt1 activity results in up-regulation of the S6K pathway. Thus, this is the first study providing a novel role for the hypothalamic Sirt1 in the regulation of food intake and body weight. Given the role of Sirt1 in several peripheral tissues and hypothalamus, potential therapies centered on Sirt1 regulation might provide promising therapies in the treatment of metabolic diseases including obesity. |
first_indexed | 2024-04-12T23:54:50Z |
format | Article |
id | doaj.art-739d8c280fbc438dbe25461e7bbbb7c6 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-12T23:54:50Z |
publishDate | 2009-12-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-739d8c280fbc438dbe25461e7bbbb7c62022-12-22T03:11:34ZengPublic Library of Science (PLoS)PLoS ONE1932-62032009-12-01412e832210.1371/journal.pone.0008322Hypothalamic Sirt1 regulates food intake in a rodent model system.Işin CakirMario PerelloOmar LansariNorma J MessierCharles A VasletEduardo A NillniSirt1 is an evolutionarily conserved NAD(+) dependent deacetylase involved in a wide range of processes including cellular differentiation, apoptosis, as well as metabolism, and aging. In this study, we investigated the role of hypothalamic Sirt1 in energy balance. Pharmacological inhibition or siRNA mediated knock down of hypothalamic Sirt1 showed to decrease food intake and body weight gain. Central administration of a specific melanocortin antagonist, SHU9119, reversed the anorectic effect of hypothalamic Sirt1 inhibition, suggesting that Sirt1 regulates food intake through the central melanocortin signaling. We also showed that fasting increases hypothalamic Sirt1 expression and decreases FoxO1 (Forkhead transcription factor) acetylation suggesting that Sirt1 regulates the central melanocortin system in a FoxO1 dependent manner. In addition, hypothalamic Sirt1 showed to regulate S6K signaling such that inhibition of the fasting induced Sirt1 activity results in up-regulation of the S6K pathway. Thus, this is the first study providing a novel role for the hypothalamic Sirt1 in the regulation of food intake and body weight. Given the role of Sirt1 in several peripheral tissues and hypothalamus, potential therapies centered on Sirt1 regulation might provide promising therapies in the treatment of metabolic diseases including obesity.http://europepmc.org/articles/PMC2790615?pdf=render |
spellingShingle | Işin Cakir Mario Perello Omar Lansari Norma J Messier Charles A Vaslet Eduardo A Nillni Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS ONE |
title | Hypothalamic Sirt1 regulates food intake in a rodent model system. |
title_full | Hypothalamic Sirt1 regulates food intake in a rodent model system. |
title_fullStr | Hypothalamic Sirt1 regulates food intake in a rodent model system. |
title_full_unstemmed | Hypothalamic Sirt1 regulates food intake in a rodent model system. |
title_short | Hypothalamic Sirt1 regulates food intake in a rodent model system. |
title_sort | hypothalamic sirt1 regulates food intake in a rodent model system |
url | http://europepmc.org/articles/PMC2790615?pdf=render |
work_keys_str_mv | AT isincakir hypothalamicsirt1regulatesfoodintakeinarodentmodelsystem AT marioperello hypothalamicsirt1regulatesfoodintakeinarodentmodelsystem AT omarlansari hypothalamicsirt1regulatesfoodintakeinarodentmodelsystem AT normajmessier hypothalamicsirt1regulatesfoodintakeinarodentmodelsystem AT charlesavaslet hypothalamicsirt1regulatesfoodintakeinarodentmodelsystem AT eduardoanillni hypothalamicsirt1regulatesfoodintakeinarodentmodelsystem |