Preparation of Dispersed Copper(II) Oxide Nanosuspensions as Precursor for Femtosecond Reductive Laser Sintering by High-Energy Ball Milling

This contribution demonstrates and discusses the preparation of finely dispersed copper(II) oxide nanosuspensions as precursors for reductive laser sintering (RLS). Since the presence of agglomerates interferes with the various RLS sub-processes, fine dispersion is required, and oversized particles...

Full description

Bibliographic Details
Main Authors: Kay Bischoff, Cemal Esen, Ralf Hellmann
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/13/19/2693
Description
Summary:This contribution demonstrates and discusses the preparation of finely dispersed copper(II) oxide nanosuspensions as precursors for reductive laser sintering (RLS). Since the presence of agglomerates interferes with the various RLS sub-processes, fine dispersion is required, and oversized particles must be identified by a measurement methodology. Aside from the established method of scanning electron microscopy for imaging individual dried particles, this work applies the holistic and statistically more significant laser diffraction in combination with dynamic image analysis in wet dispersion. In addition to direct ultrasonic homogenization, high-energy ball milling is introduced for RLS, to produce stable nanosuspensions with a high fine fraction, and, above all, the absence of oversize particles. Whereas ultrasonic dispersion stagnates at particle sizes between 500 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">n</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula> and 20 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">m</mi></mrow></semantics></math></inline-formula>, even after 8 h, milled suspension contains a high proportion of finest particles with diameters below 100 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">n</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>, no agglomerates larger than 1 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">m</mi></mrow></semantics></math></inline-formula> and a trimodal particle size distribution with the median at 50 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">n</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula> already, after 100 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>min</mi></semantics></math></inline-formula> of milling. The precursor layers produced by doctor blade coating are examined for their quality by laser scanning microscopy. The surface roughness of such a dry film can be reduced from 1.26 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">m</mi></mrow></semantics></math></inline-formula> to 88 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">n</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula> by milling. Finally, the novel precursor is used for femtosecond RLS, to produce homogeneous, high-quality copper layers with a sheet resistance of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.28</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>/sq and a copper mass concentration of 94.2%.
ISSN:2079-4991