Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector Machine

Analysis of the odd even-numbered sentiment systems in Bekasi toll using the Support Vector Machine Algorithm, is a process of understanding, extracting, and processing textual data automatically from social media. The purpose of this study was to determine the level of accuracy, recall and precisio...

Full description

Bibliographic Details
Main Authors: Heru Sukma Utama, Didi Rosiyadi, Bobby Suryo Prakoso, Dedi Ariadarma
Format: Article
Language:English
Published: Ikatan Ahli Informatika Indonesia 2019-08-01
Series:Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Subjects:
Online Access:http://iaii.or.id/jurnal/index.php/RESTI/article/view/1050
_version_ 1827363492696424448
author Heru Sukma Utama
Didi Rosiyadi
Bobby Suryo Prakoso
Dedi Ariadarma
author_facet Heru Sukma Utama
Didi Rosiyadi
Bobby Suryo Prakoso
Dedi Ariadarma
author_sort Heru Sukma Utama
collection DOAJ
description Analysis of the odd even-numbered sentiment systems in Bekasi toll using the Support Vector Machine Algorithm, is a process of understanding, extracting, and processing textual data automatically from social media. The purpose of this study was to determine the level of accuracy, recall and precision of opinion mining generated using the Support Vector Machine algorithm to provide information community sentiment towards the effectiveness of the odd system of Bekasi tiolls on social media. The research method used in this study was to do text mining in comments-comments regarding posts regarding even odd oddities on Bekasi toll on Twitter, Instagram, Youtube and Facebook. The steps taken are starting from preprocessing, transformation, datamining and evaluation, followed by information gaon feature selection, select by weight and applying SVM Algorithm model. The results obtained from the study using the SVM model are obtained Confusion Matrix result, namely accuracyof 78.18%, Precision of 74.03%, and Sensitivity or Recall of 86.82%. Thus this study concludes that the use of Support Vector Machine Algorithms can analyze even odd sentiments on the Bekasi toll road.
first_indexed 2024-03-08T07:50:53Z
format Article
id doaj.art-73aa6f3fcbc1485c9c0ad303652af528
institution Directory Open Access Journal
issn 2580-0760
language English
last_indexed 2024-03-08T07:50:53Z
publishDate 2019-08-01
publisher Ikatan Ahli Informatika Indonesia
record_format Article
series Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
spelling doaj.art-73aa6f3fcbc1485c9c0ad303652af5282024-02-02T14:50:50ZengIkatan Ahli Informatika IndonesiaJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)2580-07602019-08-013224325010.29207/resti.v3i2.10501050Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector MachineHeru Sukma Utama0Didi Rosiyadi1Bobby Suryo Prakoso2Dedi Ariadarma3PASCA SARJANA STMIK NUSA MANDIRISTMIK Nusa Mandiri JakartaSTMIK Nusa Mandiri JakartaLIPIAnalysis of the odd even-numbered sentiment systems in Bekasi toll using the Support Vector Machine Algorithm, is a process of understanding, extracting, and processing textual data automatically from social media. The purpose of this study was to determine the level of accuracy, recall and precision of opinion mining generated using the Support Vector Machine algorithm to provide information community sentiment towards the effectiveness of the odd system of Bekasi tiolls on social media. The research method used in this study was to do text mining in comments-comments regarding posts regarding even odd oddities on Bekasi toll on Twitter, Instagram, Youtube and Facebook. The steps taken are starting from preprocessing, transformation, datamining and evaluation, followed by information gaon feature selection, select by weight and applying SVM Algorithm model. The results obtained from the study using the SVM model are obtained Confusion Matrix result, namely accuracyof 78.18%, Precision of 74.03%, and Sensitivity or Recall of 86.82%. Thus this study concludes that the use of Support Vector Machine Algorithms can analyze even odd sentiments on the Bekasi toll road.http://iaii.or.id/jurnal/index.php/RESTI/article/view/1050analysis, odd, even, SVM, Text Mininganalisis, ganjil, genap, SVM, Text Mining
spellingShingle Heru Sukma Utama
Didi Rosiyadi
Bobby Suryo Prakoso
Dedi Ariadarma
Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector Machine
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
analysis, odd, even, SVM, Text Mining
analisis, ganjil, genap, SVM, Text Mining
title Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector Machine
title_full Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector Machine
title_fullStr Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector Machine
title_full_unstemmed Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector Machine
title_short Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector Machine
title_sort analisis sentimen sistem ganjil genap di tol bekasi menggunakan algoritma support vector machine
topic analysis, odd, even, SVM, Text Mining
analisis, ganjil, genap, SVM, Text Mining
url http://iaii.or.id/jurnal/index.php/RESTI/article/view/1050
work_keys_str_mv AT herusukmautama analisissentimensistemganjilgenapditolbekasimenggunakanalgoritmasupportvectormachine
AT didirosiyadi analisissentimensistemganjilgenapditolbekasimenggunakanalgoritmasupportvectormachine
AT bobbysuryoprakoso analisissentimensistemganjilgenapditolbekasimenggunakanalgoritmasupportvectormachine
AT dediariadarma analisissentimensistemganjilgenapditolbekasimenggunakanalgoritmasupportvectormachine