A Simple Calibrated Ductile Fracture Model and Its Application in Failure Analysis of Steel Connections

A new fracture model is developed to predict the ductile fracture of structural steel under multiaxial stress states. First, the Lee–Mear void growth theory is used to establish the quantitative relationship between the stress triaxiality and material’s ductility. A stress triaxiality dependence fun...

Full description

Bibliographic Details
Main Authors: Wenchao Li, Yuan Jing
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/12/9/1358
_version_ 1797490404981997568
author Wenchao Li
Yuan Jing
author_facet Wenchao Li
Yuan Jing
author_sort Wenchao Li
collection DOAJ
description A new fracture model is developed to predict the ductile fracture of structural steel under multiaxial stress states. First, the Lee–Mear void growth theory is used to establish the quantitative relationship between the stress triaxiality and material’s ductility. A stress triaxiality dependence function, which accounts for the material’s strain hardening, is derived from modifying the dilatation rate of a spherical void in a typical unit cell. Subsequently, the Tresca failure model is used in conjunction with the Swift hardening law to establish a Lode dependence of fracture strain. Then, the theoretical formula of the new fracture model is obtained by combining both stress triaxiality and Lode angle dependence functions. The proposed fracture model has a unique advantage: i.e., this model has only two material parameters. These two parameters can be easily calibrated through a simple standard coupon test, which significantly reduces the difficulty of model calibration work and facilitates its application in practical engineering. In order to verify the new fracture model, the test results of five types of Q460 steel specimens were used to calibrate the model parameters. The prediction accuracy of the new model is then checked by calculating the average error between the test results and the predicted fracture strain envelope. Finally, the new fracture model was applied in the numerical analysis of two types of steel connections. The validation of the proposed fracture model is verified by comparing the load–displacement curve and failure modes of the steel connections obtained from both test and numerical analysis.
first_indexed 2024-03-10T00:32:33Z
format Article
id doaj.art-73c6ebcd215842b6a86eca30b17a0dd1
institution Directory Open Access Journal
issn 2075-5309
language English
last_indexed 2024-03-10T00:32:33Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Buildings
spelling doaj.art-73c6ebcd215842b6a86eca30b17a0dd12023-11-23T15:23:14ZengMDPI AGBuildings2075-53092022-09-01129135810.3390/buildings12091358A Simple Calibrated Ductile Fracture Model and Its Application in Failure Analysis of Steel ConnectionsWenchao Li0Yuan Jing1School of Civil Engineering, Chang’an University, Xi’an 710061, ChinaSchool of Highway, Chang’an University, Xi’an 710064, ChinaA new fracture model is developed to predict the ductile fracture of structural steel under multiaxial stress states. First, the Lee–Mear void growth theory is used to establish the quantitative relationship between the stress triaxiality and material’s ductility. A stress triaxiality dependence function, which accounts for the material’s strain hardening, is derived from modifying the dilatation rate of a spherical void in a typical unit cell. Subsequently, the Tresca failure model is used in conjunction with the Swift hardening law to establish a Lode dependence of fracture strain. Then, the theoretical formula of the new fracture model is obtained by combining both stress triaxiality and Lode angle dependence functions. The proposed fracture model has a unique advantage: i.e., this model has only two material parameters. These two parameters can be easily calibrated through a simple standard coupon test, which significantly reduces the difficulty of model calibration work and facilitates its application in practical engineering. In order to verify the new fracture model, the test results of five types of Q460 steel specimens were used to calibrate the model parameters. The prediction accuracy of the new model is then checked by calculating the average error between the test results and the predicted fracture strain envelope. Finally, the new fracture model was applied in the numerical analysis of two types of steel connections. The validation of the proposed fracture model is verified by comparing the load–displacement curve and failure modes of the steel connections obtained from both test and numerical analysis.https://www.mdpi.com/2075-5309/12/9/1358ductile fracture modelstructural steelsteel connectionfracture prediction
spellingShingle Wenchao Li
Yuan Jing
A Simple Calibrated Ductile Fracture Model and Its Application in Failure Analysis of Steel Connections
Buildings
ductile fracture model
structural steel
steel connection
fracture prediction
title A Simple Calibrated Ductile Fracture Model and Its Application in Failure Analysis of Steel Connections
title_full A Simple Calibrated Ductile Fracture Model and Its Application in Failure Analysis of Steel Connections
title_fullStr A Simple Calibrated Ductile Fracture Model and Its Application in Failure Analysis of Steel Connections
title_full_unstemmed A Simple Calibrated Ductile Fracture Model and Its Application in Failure Analysis of Steel Connections
title_short A Simple Calibrated Ductile Fracture Model and Its Application in Failure Analysis of Steel Connections
title_sort simple calibrated ductile fracture model and its application in failure analysis of steel connections
topic ductile fracture model
structural steel
steel connection
fracture prediction
url https://www.mdpi.com/2075-5309/12/9/1358
work_keys_str_mv AT wenchaoli asimplecalibratedductilefracturemodelanditsapplicationinfailureanalysisofsteelconnections
AT yuanjing asimplecalibratedductilefracturemodelanditsapplicationinfailureanalysisofsteelconnections
AT wenchaoli simplecalibratedductilefracturemodelanditsapplicationinfailureanalysisofsteelconnections
AT yuanjing simplecalibratedductilefracturemodelanditsapplicationinfailureanalysisofsteelconnections