Monogenic Functions in a Finite-Dimensional Semi-Simple Commutative Algebra

We obtain a constructive description of monogenic functions taking values in a finite-dimensional semi-simple commutative algebra by means of holomorphic functions of the complex variable. We prove that the mentioned monogenic functions have the Gateaux derivatives of all orders. For monogenic funct...

Full description

Bibliographic Details
Main Authors: Plaksa S. A., Pukhtaievych R. P.
Format: Article
Language:English
Published: Sciendo 2014-12-01
Series:Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Subjects:
Online Access:https://doi.org/10.2478/auom-2014-0018
_version_ 1811272385232371712
author Plaksa S. A.
Pukhtaievych R. P.
author_facet Plaksa S. A.
Pukhtaievych R. P.
author_sort Plaksa S. A.
collection DOAJ
description We obtain a constructive description of monogenic functions taking values in a finite-dimensional semi-simple commutative algebra by means of holomorphic functions of the complex variable. We prove that the mentioned monogenic functions have the Gateaux derivatives of all orders. For monogenic functions we prove also analogues of classical integral theorems of the holomorphic function theory: the Cauchy integral theorems for surface and curvilinear integrals, the Morera theorem and the Cauchy integral formula.
first_indexed 2024-04-12T22:39:22Z
format Article
id doaj.art-73cb05392a10469ba418753a159d3c15
institution Directory Open Access Journal
issn 1844-0835
language English
last_indexed 2024-04-12T22:39:22Z
publishDate 2014-12-01
publisher Sciendo
record_format Article
series Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
spelling doaj.art-73cb05392a10469ba418753a159d3c152022-12-22T03:13:47ZengSciendoAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica1844-08352014-12-0122122123510.2478/auom-2014-0018Monogenic Functions in a Finite-Dimensional Semi-Simple Commutative AlgebraPlaksa S. A.0Pukhtaievych R. P.1Department of complex analysis and potential theory, Institute of Mathematics of the National Academy of Sciences of Ukraine, 3 Tereshchenkivska Street, Kiev, UkraineDepartment of complex analysis and potential theory, Institute of Mathematics of the National Academy of Sciences of Ukraine, 3 Tereshchenkivska Street, Kiev, UkraineWe obtain a constructive description of monogenic functions taking values in a finite-dimensional semi-simple commutative algebra by means of holomorphic functions of the complex variable. We prove that the mentioned monogenic functions have the Gateaux derivatives of all orders. For monogenic functions we prove also analogues of classical integral theorems of the holomorphic function theory: the Cauchy integral theorems for surface and curvilinear integrals, the Morera theorem and the Cauchy integral formula.https://doi.org/10.2478/auom-2014-0018commutative banach algebramonogenic functionlaplace equationcauchy integral theoremcauchy integral formulamorera theorem
spellingShingle Plaksa S. A.
Pukhtaievych R. P.
Monogenic Functions in a Finite-Dimensional Semi-Simple Commutative Algebra
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
commutative banach algebra
monogenic function
laplace equation
cauchy integral theorem
cauchy integral formula
morera theorem
title Monogenic Functions in a Finite-Dimensional Semi-Simple Commutative Algebra
title_full Monogenic Functions in a Finite-Dimensional Semi-Simple Commutative Algebra
title_fullStr Monogenic Functions in a Finite-Dimensional Semi-Simple Commutative Algebra
title_full_unstemmed Monogenic Functions in a Finite-Dimensional Semi-Simple Commutative Algebra
title_short Monogenic Functions in a Finite-Dimensional Semi-Simple Commutative Algebra
title_sort monogenic functions in a finite dimensional semi simple commutative algebra
topic commutative banach algebra
monogenic function
laplace equation
cauchy integral theorem
cauchy integral formula
morera theorem
url https://doi.org/10.2478/auom-2014-0018
work_keys_str_mv AT plaksasa monogenicfunctionsinafinitedimensionalsemisimplecommutativealgebra
AT pukhtaievychrp monogenicfunctionsinafinitedimensionalsemisimplecommutativealgebra