N=33 $$ \mathcal{N}=\left(3,3\right) $$ holography on AdS3 × (S3 × S3 × S1)/ℤ2
Abstract We consider string theory on AdS3 × (S3 × S3 × S1)/ℤ2, a background supporting N=33 $$ \mathcal{N}=\left(3,3\right) $$ spacetime supersymmetry. We propose that string theory on this background is dual to the symmetric product orbifold of S0/ℤ2 $$ {\mathcal{S}}_0/{\mathbb{Z}}_2 $$ where S0 $...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-07-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP07(2018)143 |
_version_ | 1818216109465141248 |
---|---|
author | Lorenz Eberhardt Ida G. Zadeh |
author_facet | Lorenz Eberhardt Ida G. Zadeh |
author_sort | Lorenz Eberhardt |
collection | DOAJ |
description | Abstract We consider string theory on AdS3 × (S3 × S3 × S1)/ℤ2, a background supporting N=33 $$ \mathcal{N}=\left(3,3\right) $$ spacetime supersymmetry. We propose that string theory on this background is dual to the symmetric product orbifold of S0/ℤ2 $$ {\mathcal{S}}_0/{\mathbb{Z}}_2 $$ where S0 $$ {\mathcal{S}}_0 $$ is a theory of four free fermions and one free boson. We show that the BPS spectra of the two sides of the duality match precisely. Furthermore, we compute the elliptic genus of the dual CFT and that of the supergravity limit of string theory and demonstrate that they match, hence providing non-trivial support for the holographic proposal. |
first_indexed | 2024-12-12T06:46:45Z |
format | Article |
id | doaj.art-73d3419d03fd4e1492aa910e08aaa573 |
institution | Directory Open Access Journal |
issn | 1029-8479 |
language | English |
last_indexed | 2024-12-12T06:46:45Z |
publishDate | 2018-07-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj.art-73d3419d03fd4e1492aa910e08aaa5732022-12-22T00:34:11ZengSpringerOpenJournal of High Energy Physics1029-84792018-07-012018714210.1007/JHEP07(2018)143N=33 $$ \mathcal{N}=\left(3,3\right) $$ holography on AdS3 × (S3 × S3 × S1)/ℤ2Lorenz Eberhardt0Ida G. Zadeh1Institut für Theoretische Physik, ETH ZürichDepartment of Mathematics, ETH ZürichAbstract We consider string theory on AdS3 × (S3 × S3 × S1)/ℤ2, a background supporting N=33 $$ \mathcal{N}=\left(3,3\right) $$ spacetime supersymmetry. We propose that string theory on this background is dual to the symmetric product orbifold of S0/ℤ2 $$ {\mathcal{S}}_0/{\mathbb{Z}}_2 $$ where S0 $$ {\mathcal{S}}_0 $$ is a theory of four free fermions and one free boson. We show that the BPS spectra of the two sides of the duality match precisely. Furthermore, we compute the elliptic genus of the dual CFT and that of the supergravity limit of string theory and demonstrate that they match, hence providing non-trivial support for the holographic proposal.http://link.springer.com/article/10.1007/JHEP07(2018)143AdS-CFT CorrespondenceConformal Field TheoryExtended Supersymmetry |
spellingShingle | Lorenz Eberhardt Ida G. Zadeh N=33 $$ \mathcal{N}=\left(3,3\right) $$ holography on AdS3 × (S3 × S3 × S1)/ℤ2 Journal of High Energy Physics AdS-CFT Correspondence Conformal Field Theory Extended Supersymmetry |
title | N=33 $$ \mathcal{N}=\left(3,3\right) $$ holography on AdS3 × (S3 × S3 × S1)/ℤ2 |
title_full | N=33 $$ \mathcal{N}=\left(3,3\right) $$ holography on AdS3 × (S3 × S3 × S1)/ℤ2 |
title_fullStr | N=33 $$ \mathcal{N}=\left(3,3\right) $$ holography on AdS3 × (S3 × S3 × S1)/ℤ2 |
title_full_unstemmed | N=33 $$ \mathcal{N}=\left(3,3\right) $$ holography on AdS3 × (S3 × S3 × S1)/ℤ2 |
title_short | N=33 $$ \mathcal{N}=\left(3,3\right) $$ holography on AdS3 × (S3 × S3 × S1)/ℤ2 |
title_sort | n 33 mathcal n left 3 3 right holography on ads3 s3 s3 s1 z2 |
topic | AdS-CFT Correspondence Conformal Field Theory Extended Supersymmetry |
url | http://link.springer.com/article/10.1007/JHEP07(2018)143 |
work_keys_str_mv | AT lorenzeberhardt n33mathcalnleft33rightholographyonads3s3s3s1z2 AT idagzadeh n33mathcalnleft33rightholographyonads3s3s3s1z2 |