System Identification and Resonant Control of Thermoacoustic Engines for Robust Solar Power

It was found that thermoacoustic solar-power generators with resonant control are more powerful than passive ones. To continue the work, this paper focuses on the synthesis of robustly resonant controllers that guarantee single-mode resonance not only in steady states, but also in transient states w...

Full description

Bibliographic Details
Main Authors: Boe-Shong Hong, Tsu-Yu Lin
Format: Article
Language:English
Published: MDPI AG 2015-05-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/8/5/4138
Description
Summary:It was found that thermoacoustic solar-power generators with resonant control are more powerful than passive ones. To continue the work, this paper focuses on the synthesis of robustly resonant controllers that guarantee single-mode resonance not only in steady states, but also in transient states when modelling uncertainties happen and working temperature temporally varies. Here the control synthesis is based on the loop shifting and the frequency-domain identification in advance thereof. Frequency-domain identification is performed to modify the mathematical modelling and to identify the most powerful mode, so that the DSP-based feedback controller can online pitch the engine to the most powerful resonant-frequency robustly and accurately. Moreover, this paper develops two control tools, the higher-order van-der-Pol oscillator and the principle of Dynamical Equilibrium, to assist in system identification and feedback synthesis, respectively.
ISSN:1996-1073