Assessments of ground subsidence along the railway in the Kashan plain, Iran, using Sentinel-1 data and NSBAS algorithm

The 110-kilometer-long Qom-Kashan railway is one of the busiest lines in Iran, passing through the Kashan plain. The majority of Iran's plains have subsided in recent years as a result of uncontrolled groundwater extraction, and the Kashan plain is no exception. In this study, ground surface di...

Full description

Bibliographic Details
Main Authors: Siavash Shami, Mahdi Khoshlahjeh Azar, Faramarz Nilfouroushan, Maryam Salimi, Mir Amir Mohammad Reshadi
Format: Article
Language:English
Published: Elsevier 2022-08-01
Series:International Journal of Applied Earth Observations and Geoinformation
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1569843222001005
Description
Summary:The 110-kilometer-long Qom-Kashan railway is one of the busiest lines in Iran, passing through the Kashan plain. The majority of Iran's plains have subsided in recent years as a result of uncontrolled groundwater extraction, and the Kashan plain is no exception. In this study, ground surface displacement in the Kashan plain region and its impact on the railway were investigated using New Small Baseline Subset (NSBAS) in up-down and east–west directions using descending and ascending Sentinel-1 data collected between 2015 and 2021. Our results indicate that the Kashan plain is subsiding more than 90 mm/year. The study of the local areas around the railway which passes through the study area revealed that the rate of vertical velocity in some locations reaches –23 mm/year, while the rate of east–west velocity is insignificant and is approximately ±2 mm/year. Additionally, a method for analyzing the railway's stability based on longitudinal profiles along the railway is presented. Our findings suggest that more than 60% of the railway line is subject to variable amounts of subsidence. Additionally, a region of approximately one kilometer of the railway has been classified as a risk zone due to relatively fast local deformation. After examining the effect of various factors, it was determined that uncontrolled groundwater extraction in agricultural areas contributed to the subsidence in this area. Our results show that the presented stability control approach in this study is highly reliable for creating hazard profiles for linear structures, such as railways.
ISSN:1569-8432