Modeling of water table profile variations owing to stream–aquifer interaction
Spatial and temporal variations of the water table could be explained by the one-dimensional Boussinesq equation by incorporating the variables of evapotranspiration and groundwater recharge with appropriate initial and boundary conditions. In this study, the stream–aquifer interaction has been inve...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IWA Publishing
2023-11-01
|
Series: | Water Science and Technology |
Subjects: | |
Online Access: | http://wst.iwaponline.com/content/88/9/2284 |
_version_ | 1797627541115109376 |
---|---|
author | Ashutosh Upadhyaya Manisha M. Kankarej Pawan Jeet |
author_facet | Ashutosh Upadhyaya Manisha M. Kankarej Pawan Jeet |
author_sort | Ashutosh Upadhyaya |
collection | DOAJ |
description | Spatial and temporal variations of the water table could be explained by the one-dimensional Boussinesq equation by incorporating the variables of evapotranspiration and groundwater recharge with appropriate initial and boundary conditions. In this study, the stream–aquifer interaction has been investigated through a numerical example model with the implementations of Galerkin's method-based Finite Element Solution (FES), Hybrid Finite Analytic Solution (HFAS), Fully Implicit Finite Difference Solution (FIFDS) of one-dimensional nonlinear Boussinesq equation, and analytical solutions of the Boussinesq equation linearized by Baumann's transformation (AS I) as well as linearized by Werner's transformation (AS II). Considering HFAS as the benchmark solution, it was observed that in both recharging and discharging aquifers, water table profiles at 1 day and 5 days as obtained from FES followed by FIFDS were observed quite close to HFAS. Based on L2 and Tchebycheff norms, FES and FIFDS were ranked in first and second place, respectively. L2 and Tchebycheff norms could not consistently establish the performance ranking of analytical solutions but their performance ranking was certainly below the numerical solutions. The performance ranking of analytical solutions could not consistently be established using the L2 and Tchebycheff norms, but it was certainly below the numerical solutions.
HIGHLIGHTS
One-dimensional Boussinesq equation after incorporating constant SI and ET was found appropriate to signify stream–aquifer interaction in the semi-infinite flow region.;
Both recharging and discharging aquifers, water table profiles at 1 day and 5 days as obtained from FES followed by FIFDS were observed quite close to HFAS.;
Performance of AS I was better than AS II in both recharging and discharging aquifers.; |
first_indexed | 2024-03-11T10:25:45Z |
format | Article |
id | doaj.art-73df3eab2c204c418b666b47567d7437 |
institution | Directory Open Access Journal |
issn | 0273-1223 1996-9732 |
language | English |
last_indexed | 2024-03-11T10:25:45Z |
publishDate | 2023-11-01 |
publisher | IWA Publishing |
record_format | Article |
series | Water Science and Technology |
spelling | doaj.art-73df3eab2c204c418b666b47567d74372023-11-15T13:56:02ZengIWA PublishingWater Science and Technology0273-12231996-97322023-11-018892284229610.2166/wst.2023.332332Modeling of water table profile variations owing to stream–aquifer interactionAshutosh Upadhyaya0Manisha M. Kankarej1Pawan Jeet2 Division of Land and Water Management, ICAR – Research Complex for Eastern Region, Patna 800 014, India Visiting Assistant Professor, Department of Mathematics and Sciences, Rochester Institute of Technology, Dubai, United Arab Emirates Division of Land and Water Management, ICAR – Research Complex for Eastern Region, Patna 800 014, India Spatial and temporal variations of the water table could be explained by the one-dimensional Boussinesq equation by incorporating the variables of evapotranspiration and groundwater recharge with appropriate initial and boundary conditions. In this study, the stream–aquifer interaction has been investigated through a numerical example model with the implementations of Galerkin's method-based Finite Element Solution (FES), Hybrid Finite Analytic Solution (HFAS), Fully Implicit Finite Difference Solution (FIFDS) of one-dimensional nonlinear Boussinesq equation, and analytical solutions of the Boussinesq equation linearized by Baumann's transformation (AS I) as well as linearized by Werner's transformation (AS II). Considering HFAS as the benchmark solution, it was observed that in both recharging and discharging aquifers, water table profiles at 1 day and 5 days as obtained from FES followed by FIFDS were observed quite close to HFAS. Based on L2 and Tchebycheff norms, FES and FIFDS were ranked in first and second place, respectively. L2 and Tchebycheff norms could not consistently establish the performance ranking of analytical solutions but their performance ranking was certainly below the numerical solutions. The performance ranking of analytical solutions could not consistently be established using the L2 and Tchebycheff norms, but it was certainly below the numerical solutions. HIGHLIGHTS One-dimensional Boussinesq equation after incorporating constant SI and ET was found appropriate to signify stream–aquifer interaction in the semi-infinite flow region.; Both recharging and discharging aquifers, water table profiles at 1 day and 5 days as obtained from FES followed by FIFDS were observed quite close to HFAS.; Performance of AS I was better than AS II in both recharging and discharging aquifers.;http://wst.iwaponline.com/content/88/9/2284analytical solutionaquifer dischargeaquifer rechargeboussinesq equationnumerical solutionstreamwater level |
spellingShingle | Ashutosh Upadhyaya Manisha M. Kankarej Pawan Jeet Modeling of water table profile variations owing to stream–aquifer interaction Water Science and Technology analytical solution aquifer discharge aquifer recharge boussinesq equation numerical solution stream water level |
title | Modeling of water table profile variations owing to stream–aquifer interaction |
title_full | Modeling of water table profile variations owing to stream–aquifer interaction |
title_fullStr | Modeling of water table profile variations owing to stream–aquifer interaction |
title_full_unstemmed | Modeling of water table profile variations owing to stream–aquifer interaction |
title_short | Modeling of water table profile variations owing to stream–aquifer interaction |
title_sort | modeling of water table profile variations owing to stream aquifer interaction |
topic | analytical solution aquifer discharge aquifer recharge boussinesq equation numerical solution stream water level |
url | http://wst.iwaponline.com/content/88/9/2284 |
work_keys_str_mv | AT ashutoshupadhyaya modelingofwatertableprofilevariationsowingtostreamaquiferinteraction AT manishamkankarej modelingofwatertableprofilevariationsowingtostreamaquiferinteraction AT pawanjeet modelingofwatertableprofilevariationsowingtostreamaquiferinteraction |