Estimating Nielsen Numbers on Wedge Product Spaces
<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-083420-i1.gif"/></inline-formula> be a self-map of a finite polyhedron that is an aspherical wedge product space <inline-formula><graphic file="1687-1812-2007-083420-i2.gif"/></...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2007-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2007/083420 |
_version_ | 1818822929918459904 |
---|---|
author | Kim Seung Won Khamsemanan Nirattaya |
author_facet | Kim Seung Won Khamsemanan Nirattaya |
author_sort | Kim Seung Won |
collection | DOAJ |
description | <p/> <p>Let <inline-formula><graphic file="1687-1812-2007-083420-i1.gif"/></inline-formula> be a self-map of a finite polyhedron that is an aspherical wedge product space <inline-formula><graphic file="1687-1812-2007-083420-i2.gif"/></inline-formula>. In this paper, we estimate the Nielsen number <inline-formula><graphic file="1687-1812-2007-083420-i3.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2007-083420-i4.gif"/></inline-formula>. In particular, we study some algebraic properties of the free products and then estimate Nielsen numbers on torus wedge surface with boundary, Klein bottle wedge surface with boundary, and torus wedge torus.</p> |
first_indexed | 2024-12-18T23:31:54Z |
format | Article |
id | doaj.art-73e29e87eeb240e19cd1da460bf48372 |
institution | Directory Open Access Journal |
issn | 1687-1820 1687-1812 |
language | English |
last_indexed | 2024-12-18T23:31:54Z |
publishDate | 2007-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Fixed Point Theory and Applications |
spelling | doaj.art-73e29e87eeb240e19cd1da460bf483722022-12-21T20:47:39ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122007-01-0120071083420Estimating Nielsen Numbers on Wedge Product SpacesKim Seung WonKhamsemanan Nirattaya<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-083420-i1.gif"/></inline-formula> be a self-map of a finite polyhedron that is an aspherical wedge product space <inline-formula><graphic file="1687-1812-2007-083420-i2.gif"/></inline-formula>. In this paper, we estimate the Nielsen number <inline-formula><graphic file="1687-1812-2007-083420-i3.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2007-083420-i4.gif"/></inline-formula>. In particular, we study some algebraic properties of the free products and then estimate Nielsen numbers on torus wedge surface with boundary, Klein bottle wedge surface with boundary, and torus wedge torus.</p>http://www.fixedpointtheoryandapplications.com/content/2007/083420 |
spellingShingle | Kim Seung Won Khamsemanan Nirattaya Estimating Nielsen Numbers on Wedge Product Spaces Fixed Point Theory and Applications |
title | Estimating Nielsen Numbers on Wedge Product Spaces |
title_full | Estimating Nielsen Numbers on Wedge Product Spaces |
title_fullStr | Estimating Nielsen Numbers on Wedge Product Spaces |
title_full_unstemmed | Estimating Nielsen Numbers on Wedge Product Spaces |
title_short | Estimating Nielsen Numbers on Wedge Product Spaces |
title_sort | estimating nielsen numbers on wedge product spaces |
url | http://www.fixedpointtheoryandapplications.com/content/2007/083420 |
work_keys_str_mv | AT kimseungwon estimatingnielsennumbersonwedgeproductspaces AT khamsemanannirattaya estimatingnielsennumbersonwedgeproductspaces |