Estimating Nielsen Numbers on Wedge Product Spaces

<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-083420-i1.gif"/></inline-formula> be a self-map of a finite polyhedron that is an aspherical wedge product space <inline-formula><graphic file="1687-1812-2007-083420-i2.gif"/></...

Full description

Bibliographic Details
Main Authors: Kim Seung Won, Khamsemanan Nirattaya
Format: Article
Language:English
Published: SpringerOpen 2007-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2007/083420
_version_ 1818822929918459904
author Kim Seung Won
Khamsemanan Nirattaya
author_facet Kim Seung Won
Khamsemanan Nirattaya
author_sort Kim Seung Won
collection DOAJ
description <p/> <p>Let <inline-formula><graphic file="1687-1812-2007-083420-i1.gif"/></inline-formula> be a self-map of a finite polyhedron that is an aspherical wedge product space <inline-formula><graphic file="1687-1812-2007-083420-i2.gif"/></inline-formula>. In this paper, we estimate the Nielsen number <inline-formula><graphic file="1687-1812-2007-083420-i3.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2007-083420-i4.gif"/></inline-formula>. In particular, we study some algebraic properties of the free products and then estimate Nielsen numbers on torus wedge surface with boundary, Klein bottle wedge surface with boundary, and torus wedge torus.</p>
first_indexed 2024-12-18T23:31:54Z
format Article
id doaj.art-73e29e87eeb240e19cd1da460bf48372
institution Directory Open Access Journal
issn 1687-1820
1687-1812
language English
last_indexed 2024-12-18T23:31:54Z
publishDate 2007-01-01
publisher SpringerOpen
record_format Article
series Fixed Point Theory and Applications
spelling doaj.art-73e29e87eeb240e19cd1da460bf483722022-12-21T20:47:39ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122007-01-0120071083420Estimating Nielsen Numbers on Wedge Product SpacesKim Seung WonKhamsemanan Nirattaya<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-083420-i1.gif"/></inline-formula> be a self-map of a finite polyhedron that is an aspherical wedge product space <inline-formula><graphic file="1687-1812-2007-083420-i2.gif"/></inline-formula>. In this paper, we estimate the Nielsen number <inline-formula><graphic file="1687-1812-2007-083420-i3.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2007-083420-i4.gif"/></inline-formula>. In particular, we study some algebraic properties of the free products and then estimate Nielsen numbers on torus wedge surface with boundary, Klein bottle wedge surface with boundary, and torus wedge torus.</p>http://www.fixedpointtheoryandapplications.com/content/2007/083420
spellingShingle Kim Seung Won
Khamsemanan Nirattaya
Estimating Nielsen Numbers on Wedge Product Spaces
Fixed Point Theory and Applications
title Estimating Nielsen Numbers on Wedge Product Spaces
title_full Estimating Nielsen Numbers on Wedge Product Spaces
title_fullStr Estimating Nielsen Numbers on Wedge Product Spaces
title_full_unstemmed Estimating Nielsen Numbers on Wedge Product Spaces
title_short Estimating Nielsen Numbers on Wedge Product Spaces
title_sort estimating nielsen numbers on wedge product spaces
url http://www.fixedpointtheoryandapplications.com/content/2007/083420
work_keys_str_mv AT kimseungwon estimatingnielsennumbersonwedgeproductspaces
AT khamsemanannirattaya estimatingnielsennumbersonwedgeproductspaces