Multi-Camera Vessel-Speed Enforcement by Enhancing Detection and Re-Identification Techniques

This paper presents a camera-based vessel-speed enforcement system based on two cameras. The proposed system detects and tracks vessels per camera view and employs a re-identification (re-ID) function for linking vessels between the two cameras based on multiple bounding-box images per vessel. Newly...

Full description

Bibliographic Details
Main Authors: Matthijs H. Zwemer, Herman G. J. Groot, Rob Wijnhoven, Egor Bondarev, Peter H. N. de With
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/14/4659
_version_ 1797526059020713984
author Matthijs H. Zwemer
Herman G. J. Groot
Rob Wijnhoven
Egor Bondarev
Peter H. N. de With
author_facet Matthijs H. Zwemer
Herman G. J. Groot
Rob Wijnhoven
Egor Bondarev
Peter H. N. de With
author_sort Matthijs H. Zwemer
collection DOAJ
description This paper presents a camera-based vessel-speed enforcement system based on two cameras. The proposed system detects and tracks vessels per camera view and employs a re-identification (re-ID) function for linking vessels between the two cameras based on multiple bounding-box images per vessel. Newly detected vessels in one camera (query) are compared to the gallery set of all vessels detected by the other camera. To train and evaluate the proposed detection and re-ID system, a new Vessel-reID dataset is introduced. This extensive dataset has captured a total of 2474 different vessels covered in multiple images, resulting in a total of 136,888 vessel bounding-box images. Multiple CNN detector architectures are evaluated in-depth. The SSD512 detector performs best with respect to its speed (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>85.0</mn><mo>%</mo></mrow></semantics></math></inline-formula> Recall@95Precision at 20.1 frames per second). For the re-ID of vessels, a large portion of the total trajectory can be covered by the successful detections of the SSD model. The re-ID experiments start with a baseline single-image evaluation obtaining a score of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>55.9</mn><mo>%</mo></mrow></semantics></math></inline-formula> Rank-1 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>49.7</mn><mo>%</mo></mrow></semantics></math></inline-formula> mAP) for the existing TriNet network, while the available MGN model obtains <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>68.9</mn><mo>%</mo></mrow></semantics></math></inline-formula> Rank-1 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>62.6</mn><mo>%</mo></mrow></semantics></math></inline-formula> mAP). The performance significantly increases with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.6</mn><mo>%</mo></mrow></semantics></math></inline-formula> Rank-1 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.7</mn><mo>%</mo></mrow></semantics></math></inline-formula> mAP) for MGN by applying matching with multiple images from a single vessel. When emphasizing more fine details by selecting only the largest bounding-box images, another <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.0</mn><mo>%</mo></mrow></semantics></math></inline-formula> Rank-1 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.4</mn><mo>%</mo></mrow></semantics></math></inline-formula> mAP) is added. Application-specific optimizations such as travel-time selection and applying a cross-camera matching constraint further enhance the results, leading to a final <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>88.9</mn><mo>%</mo></mrow></semantics></math></inline-formula> Rank-1 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>83.5</mn><mo>%</mo></mrow></semantics></math></inline-formula> mAP performance.
first_indexed 2024-03-10T09:24:45Z
format Article
id doaj.art-73ecae4d2f8e46b29a87605baa432469
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-10T09:24:45Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-73ecae4d2f8e46b29a87605baa4324692023-11-22T04:54:08ZengMDPI AGSensors1424-82202021-07-012114465910.3390/s21144659Multi-Camera Vessel-Speed Enforcement by Enhancing Detection and Re-Identification Techniques Matthijs H. Zwemer0Herman G. J. Groot1Rob Wijnhoven2Egor Bondarev3Peter H. N. de With4Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The NetherlandsDepartment of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The NetherlandsViNotion B.V., 5641 JA Eindhoven, The NetherlandsDepartment of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The NetherlandsDepartment of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The NetherlandsThis paper presents a camera-based vessel-speed enforcement system based on two cameras. The proposed system detects and tracks vessels per camera view and employs a re-identification (re-ID) function for linking vessels between the two cameras based on multiple bounding-box images per vessel. Newly detected vessels in one camera (query) are compared to the gallery set of all vessels detected by the other camera. To train and evaluate the proposed detection and re-ID system, a new Vessel-reID dataset is introduced. This extensive dataset has captured a total of 2474 different vessels covered in multiple images, resulting in a total of 136,888 vessel bounding-box images. Multiple CNN detector architectures are evaluated in-depth. The SSD512 detector performs best with respect to its speed (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>85.0</mn><mo>%</mo></mrow></semantics></math></inline-formula> Recall@95Precision at 20.1 frames per second). For the re-ID of vessels, a large portion of the total trajectory can be covered by the successful detections of the SSD model. The re-ID experiments start with a baseline single-image evaluation obtaining a score of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>55.9</mn><mo>%</mo></mrow></semantics></math></inline-formula> Rank-1 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>49.7</mn><mo>%</mo></mrow></semantics></math></inline-formula> mAP) for the existing TriNet network, while the available MGN model obtains <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>68.9</mn><mo>%</mo></mrow></semantics></math></inline-formula> Rank-1 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>62.6</mn><mo>%</mo></mrow></semantics></math></inline-formula> mAP). The performance significantly increases with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.6</mn><mo>%</mo></mrow></semantics></math></inline-formula> Rank-1 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.7</mn><mo>%</mo></mrow></semantics></math></inline-formula> mAP) for MGN by applying matching with multiple images from a single vessel. When emphasizing more fine details by selecting only the largest bounding-box images, another <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.0</mn><mo>%</mo></mrow></semantics></math></inline-formula> Rank-1 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.4</mn><mo>%</mo></mrow></semantics></math></inline-formula> mAP) is added. Application-specific optimizations such as travel-time selection and applying a cross-camera matching constraint further enhance the results, leading to a final <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>88.9</mn><mo>%</mo></mrow></semantics></math></inline-formula> Rank-1 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>83.5</mn><mo>%</mo></mrow></semantics></math></inline-formula> mAP performance.https://www.mdpi.com/1424-8220/21/14/4659computer vision applicationvideo surveillancemaritime traffic managementvessel detectionvessel re-identification
spellingShingle Matthijs H. Zwemer
Herman G. J. Groot
Rob Wijnhoven
Egor Bondarev
Peter H. N. de With
Multi-Camera Vessel-Speed Enforcement by Enhancing Detection and Re-Identification Techniques
Sensors
computer vision application
video surveillance
maritime traffic management
vessel detection
vessel re-identification
title Multi-Camera Vessel-Speed Enforcement by Enhancing Detection and Re-Identification Techniques
title_full Multi-Camera Vessel-Speed Enforcement by Enhancing Detection and Re-Identification Techniques
title_fullStr Multi-Camera Vessel-Speed Enforcement by Enhancing Detection and Re-Identification Techniques
title_full_unstemmed Multi-Camera Vessel-Speed Enforcement by Enhancing Detection and Re-Identification Techniques
title_short Multi-Camera Vessel-Speed Enforcement by Enhancing Detection and Re-Identification Techniques
title_sort multi camera vessel speed enforcement by enhancing detection and re identification techniques
topic computer vision application
video surveillance
maritime traffic management
vessel detection
vessel re-identification
url https://www.mdpi.com/1424-8220/21/14/4659
work_keys_str_mv AT matthijshzwemer multicameravesselspeedenforcementbyenhancingdetectionandreidentificationtechniques
AT hermangjgroot multicameravesselspeedenforcementbyenhancingdetectionandreidentificationtechniques
AT robwijnhoven multicameravesselspeedenforcementbyenhancingdetectionandreidentificationtechniques
AT egorbondarev multicameravesselspeedenforcementbyenhancingdetectionandreidentificationtechniques
AT peterhndewith multicameravesselspeedenforcementbyenhancingdetectionandreidentificationtechniques