Crystallization Kinetics Analysis of the Binary Amorphous Mg<sub>72</sub>Zn<sub>28</sub> Alloy
The aim of the study was to analyze the crystallization kinetics of the Mg<sub>72</sub>Zn<sub>28</sub> metallic glass alloy. The crystallization kinetics of Mg<sub>72</sub>Zn<sub>28</sub> metallic glass were investigated by differential scanning calori...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-03-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/16/7/2727 |
_version_ | 1797607574349021184 |
---|---|
author | Bartosz Opitek Beata Gracz Janusz Lelito Witold K. Krajewski Mariusz Łucarz Piotr Bała Tomasz Kozieł Łukasz Gondek Michał Szucki |
author_facet | Bartosz Opitek Beata Gracz Janusz Lelito Witold K. Krajewski Mariusz Łucarz Piotr Bała Tomasz Kozieł Łukasz Gondek Michał Szucki |
author_sort | Bartosz Opitek |
collection | DOAJ |
description | The aim of the study was to analyze the crystallization kinetics of the Mg<sub>72</sub>Zn<sub>28</sub> metallic glass alloy. The crystallization kinetics of Mg<sub>72</sub>Zn<sub>28</sub> metallic glass were investigated by differential scanning calorimetry and X-ray diffraction. The phases formed during the crystallization process were identified as α-Mg and complex Mg<sub>12</sub>Zn<sub>13</sub> phases. Activation energies for the glass transition temperature, crystallization onset, and peak were calculated based on the Kissinger model. The activation energy calculated from the Kissinger model was <i>E</i><sub>g</sub> = 176.91, <i>E</i><sub>x</sub> = 124.26, <i>E</i><sub>p1</sub> = 117.49, and <i>E</i><sub>p2</sub> = 114.48 kJ mol<sup>−1</sup>, respectively. |
first_indexed | 2024-03-11T05:31:50Z |
format | Article |
id | doaj.art-740710fbbf9242de8dcaf374bae051bb |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-11T05:31:50Z |
publishDate | 2023-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-740710fbbf9242de8dcaf374bae051bb2023-11-17T17:04:12ZengMDPI AGMaterials1996-19442023-03-01167272710.3390/ma16072727Crystallization Kinetics Analysis of the Binary Amorphous Mg<sub>72</sub>Zn<sub>28</sub> AlloyBartosz Opitek0Beata Gracz1Janusz Lelito2Witold K. Krajewski3Mariusz Łucarz4Piotr Bała5Tomasz Kozieł6Łukasz Gondek7Michał Szucki8Faculty of Foundry Engineering, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Cracow, PolandFaculty of Foundry Engineering, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Cracow, PolandFaculty of Foundry Engineering, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Cracow, PolandFaculty of Foundry Engineering, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Cracow, PolandFaculty of Foundry Engineering, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Cracow, PolandFaculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Cracow, PolandFaculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Cracow, PolandFaculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Cracow, PolandFoundry Institute, Technische Universität Bergakademie Freiberg, 4 Bernhard-von-Cotta-Str., 09599 Freiberg, GermanyThe aim of the study was to analyze the crystallization kinetics of the Mg<sub>72</sub>Zn<sub>28</sub> metallic glass alloy. The crystallization kinetics of Mg<sub>72</sub>Zn<sub>28</sub> metallic glass were investigated by differential scanning calorimetry and X-ray diffraction. The phases formed during the crystallization process were identified as α-Mg and complex Mg<sub>12</sub>Zn<sub>13</sub> phases. Activation energies for the glass transition temperature, crystallization onset, and peak were calculated based on the Kissinger model. The activation energy calculated from the Kissinger model was <i>E</i><sub>g</sub> = 176.91, <i>E</i><sub>x</sub> = 124.26, <i>E</i><sub>p1</sub> = 117.49, and <i>E</i><sub>p2</sub> = 114.48 kJ mol<sup>−1</sup>, respectively.https://www.mdpi.com/1996-1944/16/7/2727amorphous MgZn alloymetallic glassescrystallization kineticsthermal stabilityKissinger model |
spellingShingle | Bartosz Opitek Beata Gracz Janusz Lelito Witold K. Krajewski Mariusz Łucarz Piotr Bała Tomasz Kozieł Łukasz Gondek Michał Szucki Crystallization Kinetics Analysis of the Binary Amorphous Mg<sub>72</sub>Zn<sub>28</sub> Alloy Materials amorphous MgZn alloy metallic glasses crystallization kinetics thermal stability Kissinger model |
title | Crystallization Kinetics Analysis of the Binary Amorphous Mg<sub>72</sub>Zn<sub>28</sub> Alloy |
title_full | Crystallization Kinetics Analysis of the Binary Amorphous Mg<sub>72</sub>Zn<sub>28</sub> Alloy |
title_fullStr | Crystallization Kinetics Analysis of the Binary Amorphous Mg<sub>72</sub>Zn<sub>28</sub> Alloy |
title_full_unstemmed | Crystallization Kinetics Analysis of the Binary Amorphous Mg<sub>72</sub>Zn<sub>28</sub> Alloy |
title_short | Crystallization Kinetics Analysis of the Binary Amorphous Mg<sub>72</sub>Zn<sub>28</sub> Alloy |
title_sort | crystallization kinetics analysis of the binary amorphous mg sub 72 sub zn sub 28 sub alloy |
topic | amorphous MgZn alloy metallic glasses crystallization kinetics thermal stability Kissinger model |
url | https://www.mdpi.com/1996-1944/16/7/2727 |
work_keys_str_mv | AT bartoszopitek crystallizationkineticsanalysisofthebinaryamorphousmgsub72subznsub28suballoy AT beatagracz crystallizationkineticsanalysisofthebinaryamorphousmgsub72subznsub28suballoy AT januszlelito crystallizationkineticsanalysisofthebinaryamorphousmgsub72subznsub28suballoy AT witoldkkrajewski crystallizationkineticsanalysisofthebinaryamorphousmgsub72subznsub28suballoy AT mariuszłucarz crystallizationkineticsanalysisofthebinaryamorphousmgsub72subznsub28suballoy AT piotrbała crystallizationkineticsanalysisofthebinaryamorphousmgsub72subznsub28suballoy AT tomaszkozieł crystallizationkineticsanalysisofthebinaryamorphousmgsub72subznsub28suballoy AT łukaszgondek crystallizationkineticsanalysisofthebinaryamorphousmgsub72subznsub28suballoy AT michałszucki crystallizationkineticsanalysisofthebinaryamorphousmgsub72subznsub28suballoy |