Deep Variational Embedding Representation on Neural Collaborative Filtering Recommender Systems

Visual representation of user and item relations is an important issue in recommender systems. This is a big data task that helps to understand the underlying structure of the information, and it can be used by company managers and technical staff. Current collaborative filtering machine learning mo...

Full description

Bibliographic Details
Main Authors: Jesús Bobadilla, Jorge Dueñas, Abraham Gutiérrez, Fernando Ortega
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/9/4168
Description
Summary:Visual representation of user and item relations is an important issue in recommender systems. This is a big data task that helps to understand the underlying structure of the information, and it can be used by company managers and technical staff. Current collaborative filtering machine learning models are designed to improve prediction accuracy, not to provide suitable visual representations of data. This paper proposes a deep learning model specifically designed to display the existing relations among users, items, and both users and items. Making use of representative datasets, we show that by setting small embedding sizes of users and items, the recommender system accuracy remains nearly unchanged; it opens the door to the use of bidimensional and three-dimensional representations of users and items. The proposed neural model incorporates variational embedding stages to “unpack” (extend) embedding representations, which facilitates identifying individual samples. It also replaces the join layers in current models with a Lambda Euclidean layer that better catches the space representation of samples. The results show numerical and visual improvements when the proposed model is used compared to the baselines. The proposed model can be used to explain recommendations and to represent demographic features (gender, age, etc.) of samples.
ISSN:2076-3417