Isolation and molecular identification of melon (Cucumis melo) rhizosphere inhabitant Actinomycetes with plant growth promoting activity under biotic stress caused by Macrophomina phaseolina
Objective Melon charcoal rot is one of the most important diseases that significantly reduces the yield of melon (Cucumis melo L.). The main objectives of this study were: isolation of actinomycetes from the rhizospheric soil of different melon cultivation regions located in the Kerman and Sistan an...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | fas |
Published: |
Shahid Bahonar University of Kerman
2021-06-01
|
Series: | مجله بیوتکنولوژی کشاورزی |
Subjects: | |
Online Access: | https://jab.uk.ac.ir/article_2931_e5127c1de50fcaa42bf8be706dfed09a.pdf |
_version_ | 1797389015370956800 |
---|---|
author | Ruhangiz Rostami Mehrouyie Gholam Hosein Shahidi Bonjar Sonia Aghighi Akram Sadeghi |
author_facet | Ruhangiz Rostami Mehrouyie Gholam Hosein Shahidi Bonjar Sonia Aghighi Akram Sadeghi |
author_sort | Ruhangiz Rostami Mehrouyie |
collection | DOAJ |
description | Objective Melon charcoal rot is one of the most important diseases that significantly reduces the yield of melon (Cucumis melo L.). The main objectives of this study were: isolation of actinomycetes from the rhizospheric soil of different melon cultivation regions located in the Kerman and Sistan and Baluchestan provinces of Iran; investigating the antagonistic effects of actinomycetes against melon black stem or charcoal rot disease; evaluation of siderophore production by isolates in vitro; identification of potential isolate by PCR, and investigating their biocontrol efficacy against Macrophomina phaseolina in melon under greenhouse condition. Materials and methods Eighty actinomycete isolates were isolated from the soil of selected different melon cultivation areas and their antifungal activity against Macrophomina phaseolina was investigated. Potential isolates were evaluated for biological activities. Moreover, the efficacy of selected actinobacteria in order to biocontrol charcoal rot disease was investigated under greenhouse condition. Results Three actinomycete isolates (R1.6, R5.52 and R5.56) were revealed the highest inhibition zone size against Macrophomina phaseolina and selected for further investigations. All three isolates were able to colonize melon roots, produce extracellular enzymes and control disease in the greenhouse. The actinomycete isolate R5.56 was identified by sequence analysis of small ribosomal RNA subunit (16S rRNA) and based on the results this isolate had the highest similarity (98%) with Streptomyces species. Conclusions Biological control of plant pathogens, unlike the application of chemical pesticides, does not work quickly, but in successful cases, has more long-lasting effects compare to chemical pesticides. Biological control should be mentioned as a key component of the integrated pests and plant diseases management system approaches to minimize the environmental side effects and risks as the consequences of over usage of chemicals. This study is a prelude to further studies such as the use of these antagonists against Macrophomina phaseolina in the field, which must be done for at least three years. |
first_indexed | 2024-03-08T22:49:40Z |
format | Article |
id | doaj.art-7419565327d643bd81520711576aa7b1 |
institution | Directory Open Access Journal |
issn | 2228-6705 2228-6500 |
language | fas |
last_indexed | 2024-03-08T22:49:40Z |
publishDate | 2021-06-01 |
publisher | Shahid Bahonar University of Kerman |
record_format | Article |
series | مجله بیوتکنولوژی کشاورزی |
spelling | doaj.art-7419565327d643bd81520711576aa7b12023-12-16T17:41:04ZfasShahid Bahonar University of Kermanمجله بیوتکنولوژی کشاورزی2228-67052228-65002021-06-01132214410.22103/jab.2021.17109.12882931Isolation and molecular identification of melon (Cucumis melo) rhizosphere inhabitant Actinomycetes with plant growth promoting activity under biotic stress caused by Macrophomina phaseolinaRuhangiz Rostami Mehrouyie0Gholam Hosein Shahidi Bonjar1Sonia Aghighi2Akram Sadeghi3Graduate, Shahid Bahonar University of KermanProfessor, Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.Head of Plant Physiology Group, Research & Technology Institute of Plant Production, Shahid Bahonar University of KermanMicrobiological Biotechnology Dep. ABRIIObjective Melon charcoal rot is one of the most important diseases that significantly reduces the yield of melon (Cucumis melo L.). The main objectives of this study were: isolation of actinomycetes from the rhizospheric soil of different melon cultivation regions located in the Kerman and Sistan and Baluchestan provinces of Iran; investigating the antagonistic effects of actinomycetes against melon black stem or charcoal rot disease; evaluation of siderophore production by isolates in vitro; identification of potential isolate by PCR, and investigating their biocontrol efficacy against Macrophomina phaseolina in melon under greenhouse condition. Materials and methods Eighty actinomycete isolates were isolated from the soil of selected different melon cultivation areas and their antifungal activity against Macrophomina phaseolina was investigated. Potential isolates were evaluated for biological activities. Moreover, the efficacy of selected actinobacteria in order to biocontrol charcoal rot disease was investigated under greenhouse condition. Results Three actinomycete isolates (R1.6, R5.52 and R5.56) were revealed the highest inhibition zone size against Macrophomina phaseolina and selected for further investigations. All three isolates were able to colonize melon roots, produce extracellular enzymes and control disease in the greenhouse. The actinomycete isolate R5.56 was identified by sequence analysis of small ribosomal RNA subunit (16S rRNA) and based on the results this isolate had the highest similarity (98%) with Streptomyces species. Conclusions Biological control of plant pathogens, unlike the application of chemical pesticides, does not work quickly, but in successful cases, has more long-lasting effects compare to chemical pesticides. Biological control should be mentioned as a key component of the integrated pests and plant diseases management system approaches to minimize the environmental side effects and risks as the consequences of over usage of chemicals. This study is a prelude to further studies such as the use of these antagonists against Macrophomina phaseolina in the field, which must be done for at least three years.https://jab.uk.ac.ir/article_2931_e5127c1de50fcaa42bf8be706dfed09a.pdfactinomyceteantifungal activityplant growth promotioncucumis melomelon charcoal rot diseasemacrophomina phaseolina |
spellingShingle | Ruhangiz Rostami Mehrouyie Gholam Hosein Shahidi Bonjar Sonia Aghighi Akram Sadeghi Isolation and molecular identification of melon (Cucumis melo) rhizosphere inhabitant Actinomycetes with plant growth promoting activity under biotic stress caused by Macrophomina phaseolina مجله بیوتکنولوژی کشاورزی actinomycete antifungal activity plant growth promotion cucumis melo melon charcoal rot disease macrophomina phaseolina |
title | Isolation and molecular identification of melon (Cucumis melo) rhizosphere inhabitant Actinomycetes with plant growth promoting activity under biotic stress caused by Macrophomina phaseolina |
title_full | Isolation and molecular identification of melon (Cucumis melo) rhizosphere inhabitant Actinomycetes with plant growth promoting activity under biotic stress caused by Macrophomina phaseolina |
title_fullStr | Isolation and molecular identification of melon (Cucumis melo) rhizosphere inhabitant Actinomycetes with plant growth promoting activity under biotic stress caused by Macrophomina phaseolina |
title_full_unstemmed | Isolation and molecular identification of melon (Cucumis melo) rhizosphere inhabitant Actinomycetes with plant growth promoting activity under biotic stress caused by Macrophomina phaseolina |
title_short | Isolation and molecular identification of melon (Cucumis melo) rhizosphere inhabitant Actinomycetes with plant growth promoting activity under biotic stress caused by Macrophomina phaseolina |
title_sort | isolation and molecular identification of melon cucumis melo rhizosphere inhabitant actinomycetes with plant growth promoting activity under biotic stress caused by macrophomina phaseolina |
topic | actinomycete antifungal activity plant growth promotion cucumis melo melon charcoal rot disease macrophomina phaseolina |
url | https://jab.uk.ac.ir/article_2931_e5127c1de50fcaa42bf8be706dfed09a.pdf |
work_keys_str_mv | AT ruhangizrostamimehrouyie isolationandmolecularidentificationofmeloncucumismelorhizosphereinhabitantactinomyceteswithplantgrowthpromotingactivityunderbioticstresscausedbymacrophominaphaseolina AT gholamhoseinshahidibonjar isolationandmolecularidentificationofmeloncucumismelorhizosphereinhabitantactinomyceteswithplantgrowthpromotingactivityunderbioticstresscausedbymacrophominaphaseolina AT soniaaghighi isolationandmolecularidentificationofmeloncucumismelorhizosphereinhabitantactinomyceteswithplantgrowthpromotingactivityunderbioticstresscausedbymacrophominaphaseolina AT akramsadeghi isolationandmolecularidentificationofmeloncucumismelorhizosphereinhabitantactinomyceteswithplantgrowthpromotingactivityunderbioticstresscausedbymacrophominaphaseolina |