Localized Induction Heating of Cu-Sn Layers for Rapid Solid-Liquid Interdiffusion Bonding Based on Miniaturized Coils

Considering the demand for low temperature bonding in 3D integration and packaging of microelectronic or micromechanical components, this paper presents the development and application of an innovative inductive heating system using micro coils for rapid Cu-Sn solid-liquid interdiffusion (SLID) bond...

Full description

Bibliographic Details
Main Authors: Christian Hofmann, Maulik Satwara, Martin Kroll, Sushant Panhale, Patrick Rochala, Maik Wiemer, Karla Hiller, Harald Kuhn
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/13/8/1307
Description
Summary:Considering the demand for low temperature bonding in 3D integration and packaging of microelectronic or micromechanical components, this paper presents the development and application of an innovative inductive heating system using micro coils for rapid Cu-Sn solid-liquid interdiffusion (SLID) bonding at chip-level. The design and optimization of the micro coil as well as the analysis of the heating process were carried out by means of finite element method (FEM). The micro coil is a composite material of an aluminum nitride (AlN) carrier substrate and embedded metallic coil conductors. The conductive coil geometry is generated by electroplating of 500 µm thick copper into the AlN carrier. By using the aforementioned micro coil for inductive Cu-Sn SLID bonding, a complete transformation into the thermodynamic stable ε-phase Cu<sub>3</sub>Sn with an average shear strength of 45.1 N/mm<sup>2</sup> could be achieved in 130 s by applying a bond pressure of 3 MPa. In comparison to conventional bonding methods using conduction-based global heating, the presented inductive bonding approach is characterized by combining very high heating rates of about 180 K/s as well as localized heating and efficient cooling of the bond structures. In future, the technology will open new opportunities in the field of wafer-level bonding.
ISSN:2072-666X