Quantitative Image Quality Metrics of the Low-Dose 2D/3D Slot Scanner Compared to Two Conventional Digital Radiography X-ray Imaging Systems

The aim of this study was to determine the quantitative image quality metrics of the low-dose 2D/3D EOS slot scanner X-ray imaging system (LDSS) compared with conventional digital radiography (DR) X-ray imaging systems. The effective detective quantum efficiency (eDQE) and effective noise quantum eq...

Full description

Bibliographic Details
Main Authors: Ahmed Jibril Abdi, Bo R. Mussmann, Alistair Mackenzie, Oke Gerke, Benedikte Klaerke, Poul Erik Andersen
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/11/9/1699
Description
Summary:The aim of this study was to determine the quantitative image quality metrics of the low-dose 2D/3D EOS slot scanner X-ray imaging system (LDSS) compared with conventional digital radiography (DR) X-ray imaging systems. The effective detective quantum efficiency (eDQE) and effective noise quantum equivalent (eNEQ) were measured using chest and knee protocols. Methods: A Nationwide Evaluation of X-ray Trends (NEXT) of a chest adult phantom and a PolyMethylmethacrylate (PMMA) phantom were used for the chest and knee protocols, respectively. Quantitative image quality metrics, including effective normalised noise power spectrum (eNNPS), effective modulation transfer function (eMTF), eDQE and eNEQ of the LDSS and DR imaging systems were assessed and compared. Results: In the chest acquisition, the LDSS imaging system achieved significantly higher eNEQ and eDQE than the DR imaging systems at lower and higher spatial frequencies (0.001 ≤ <i>p</i> ≤ 0.044). For the knee acquisition, the LDSS imaging system also achieved significantly higher eNEQ and eDQE than the DR imaging systems at lower and higher spatial frequencies (0.001 ≤ <i>p</i> ≤ 0.002). However, there was no significant difference in eNEQ and eDQE between DR systems 1 and 2 at lower and higher spatial frequencies (0.10 < <i>p</i> < 1.00) for either chest or knee protocols. Conclusion: The LDSS imaging system performed well compared to the DR systems. Thus, we have demonstrated that the LDSS imaging system has the potential to be used for clinical diagnostic purposes.
ISSN:2075-4418