Energy Performance of Room Air-Conditioners and Ceiling Fans in Mixed-Mode Buildings

Studies show that people can tolerate elevated temperatures in the presence of appreciable air movement (e.g., from using ceiling fans). This minimises the use of air-conditioners and extends their set-point temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&q...

Full description

Bibliographic Details
Main Authors: Sriraj Gokarakonda, Christoph van Treeck, Rajan Rawal, Stefan Thomas
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/19/6807
Description
Summary:Studies show that people can tolerate elevated temperatures in the presence of appreciable air movement (e.g., from using ceiling fans). This minimises the use of air-conditioners and extends their set-point temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></semantics></math></inline-formula>), resulting in energy savings in space cooling. However, there is little empirical evidence on the energy savings from using ceiling fans with Room Air-Conditioners (RACs). To address this gap, we analysed the energy performance of RACs with both fixed-speed compressors and inverter technology at different set-point temperatures and ceiling fan speed settings in 15 residential Mixed-Mode Buildings (MMBs) in India. Thermal comfort conditions (as predicted by the Indian Model for Adaptive Comfort-Residential (IMAC-R)) with minimum energy consumption were maintained at a set-point temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></semantics></math></inline-formula>) of 28 and 30 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C and a fan speed setting of one. Compared with a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></semantics></math></inline-formula> of 24 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula>C, a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mrow><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></semantics></math></inline-formula> of 28 and 30 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula>C resulted in energy savings of 44 and 67%, respectively. With the use of RACs, a configuration with a minimum fan speed was satisfactory for an optimal use of energy and for maintaining the conditions of thermal comfort. In addition, RACs with inverter technology used 34–68% less energy than fixed-speed compressors. With the rising use of RACs, particularly in tropical regions, the study’s outcomes offer a significant potential for reducing space-cooling energy consumption and the resultant greenhouse gas (GHG) emissions.
ISSN:1996-1073