A Practical Degradation Based Method to Predict Long-Term Moisture Incursion and Color Change in High Power LEDs

The effect of relative humidity on LEDs and how the moisture incursion is associated to the color shift is studied. This paper proposes a different approach to describe the lumen degradation of LEDs due to the long-term effects of humidity. Using the lumen degradation data of different types of LEDs...

Full description

Bibliographic Details
Main Authors: Thong Kok Law, Fannon Lim
Format: Article
Language:English
Published: IEEE 2018-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8472891/
Description
Summary:The effect of relative humidity on LEDs and how the moisture incursion is associated to the color shift is studied. This paper proposes a different approach to describe the lumen degradation of LEDs due to the long-term effects of humidity. Using the lumen degradation data of different types of LEDs under varying conditions of relative humidity, a humidity based degradation model (HBDM) is developed. A practical estimation method from the degradation behaviour is proposed to quantitatively gauge the effect of moisture incursion by means of a humidity index. This index demonstrates a high correlation with the color shift indicated by the LED's yellow to blue output intensity ratio. Physical analyses of the LEDs provide a qualitative validation of the model, which provides good accuracy with longer periods of moisture exposure. The results demonstrate that the HBDM is an effective indicator to predict the extent of the long-term impact of humidity and associated relative color shift.
ISSN:1943-0655