Role of Planetary Radius on Atmospheric Escape of Rocky Exoplanets

Large-scale characterization of exoplanetary atmospheres is on the horizon, thereby making it possible in the future to extract their statistical properties. In this context, by using a well-validated model in the solar system, we carry out 3D magnetohydrodynamic simulations to compute nonthermal at...

Full description

Bibliographic Details
Main Authors: Laura Chin, Chuanfei Dong, Manasvi Lingam
Format: Article
Language:English
Published: IOP Publishing 2024-01-01
Series:The Astrophysical Journal Letters
Subjects:
Online Access:https://doi.org/10.3847/2041-8213/ad27d8
Description
Summary:Large-scale characterization of exoplanetary atmospheres is on the horizon, thereby making it possible in the future to extract their statistical properties. In this context, by using a well-validated model in the solar system, we carry out 3D magnetohydrodynamic simulations to compute nonthermal atmospheric ion escape rates of unmagnetized rocky exoplanets as a function of their radius based on fixed stellar radiation and wind conditions. We find that the atmospheric escape rate is, unexpectedly and strikingly, a nonmonotonic function of the planetary radius R and that it evinces a maximum at R ∼ 0.7 R _⊕ . This novel nonmonotonic behavior may arise from an intricate trade-off between the cross-sectional area of a planet (which increases with size, boosting escape rates) and its associated escape velocity (which also increases with size but diminishes escape rates). Our results could guide forthcoming observations because worlds with certain values of R (such as R ∼ 0.7 R _⊕ ) might exhibit comparatively higher escape rates when all other factors are constant.
ISSN:2041-8205