Using Traffic Light Signal to Enhance Intersection Foreground Detection Based on Video Sensor Networks

Foreground detection plays an important role in the traffic surveillance applications, especially in urban intersections. Background subtraction is an efficient approach to segment the background and foreground with static cameras from video sensor networks. But when modelling the background, most s...

Full description

Bibliographic Details
Main Authors: Rong Ding, Shunli Wang, Xu Liu
Format: Article
Language:English
Published: Hindawi - SAGE Publishing 2014-04-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1155/2014/576759
_version_ 1797725271733829632
author Rong Ding
Shunli Wang
Xu Liu
author_facet Rong Ding
Shunli Wang
Xu Liu
author_sort Rong Ding
collection DOAJ
description Foreground detection plays an important role in the traffic surveillance applications, especially in urban intersections. Background subtraction is an efficient approach to segment the background and foreground with static cameras from video sensor networks. But when modelling the background, most statistical techniques adjust the learning rate only based on the changes from video sequences, which is a crucial parameter controlling the updating speed. This causes a slow adaptation to sudden environmental changes. For example, a stopped car fuses into background before moving again, and it lowers the segmentation performance. This paper proposes an efficient way to address the problem by accounting for the physical world signal in traffic junctions. It assigns an adaptive learning rate to each pixel by integrating traffic light signal obtained from sensor networks. Combined with abundant physical world signals, background subtraction method is able to adapt itself to the outside world changes instantly. We test our approach in real urban traffic intersection; experimental results show that the new method increases the accuracy of detection and has a promising future.
first_indexed 2024-03-12T10:28:46Z
format Article
id doaj.art-74547e9103c3431983fb1b80e25410e7
institution Directory Open Access Journal
issn 1550-1477
language English
last_indexed 2024-03-12T10:28:46Z
publishDate 2014-04-01
publisher Hindawi - SAGE Publishing
record_format Article
series International Journal of Distributed Sensor Networks
spelling doaj.art-74547e9103c3431983fb1b80e25410e72023-09-02T09:24:59ZengHindawi - SAGE PublishingInternational Journal of Distributed Sensor Networks1550-14772014-04-011010.1155/2014/576759576759Using Traffic Light Signal to Enhance Intersection Foreground Detection Based on Video Sensor NetworksRong DingShunli WangXu LiuForeground detection plays an important role in the traffic surveillance applications, especially in urban intersections. Background subtraction is an efficient approach to segment the background and foreground with static cameras from video sensor networks. But when modelling the background, most statistical techniques adjust the learning rate only based on the changes from video sequences, which is a crucial parameter controlling the updating speed. This causes a slow adaptation to sudden environmental changes. For example, a stopped car fuses into background before moving again, and it lowers the segmentation performance. This paper proposes an efficient way to address the problem by accounting for the physical world signal in traffic junctions. It assigns an adaptive learning rate to each pixel by integrating traffic light signal obtained from sensor networks. Combined with abundant physical world signals, background subtraction method is able to adapt itself to the outside world changes instantly. We test our approach in real urban traffic intersection; experimental results show that the new method increases the accuracy of detection and has a promising future.https://doi.org/10.1155/2014/576759
spellingShingle Rong Ding
Shunli Wang
Xu Liu
Using Traffic Light Signal to Enhance Intersection Foreground Detection Based on Video Sensor Networks
International Journal of Distributed Sensor Networks
title Using Traffic Light Signal to Enhance Intersection Foreground Detection Based on Video Sensor Networks
title_full Using Traffic Light Signal to Enhance Intersection Foreground Detection Based on Video Sensor Networks
title_fullStr Using Traffic Light Signal to Enhance Intersection Foreground Detection Based on Video Sensor Networks
title_full_unstemmed Using Traffic Light Signal to Enhance Intersection Foreground Detection Based on Video Sensor Networks
title_short Using Traffic Light Signal to Enhance Intersection Foreground Detection Based on Video Sensor Networks
title_sort using traffic light signal to enhance intersection foreground detection based on video sensor networks
url https://doi.org/10.1155/2014/576759
work_keys_str_mv AT rongding usingtrafficlightsignaltoenhanceintersectionforegrounddetectionbasedonvideosensornetworks
AT shunliwang usingtrafficlightsignaltoenhanceintersectionforegrounddetectionbasedonvideosensornetworks
AT xuliu usingtrafficlightsignaltoenhanceintersectionforegrounddetectionbasedonvideosensornetworks