Fractional Diffusion to a Cantor Set in 2D

A random walk on a two dimensional square in <inline-formula><math display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> space with a hidden absorbing fractal set <inline-...

Full description

Bibliographic Details
Main Authors: Alexander Iomin, Trifce Sandev
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/4/4/52
_version_ 1797548615901642752
author Alexander Iomin
Trifce Sandev
author_facet Alexander Iomin
Trifce Sandev
author_sort Alexander Iomin
collection DOAJ
description A random walk on a two dimensional square in <inline-formula><math display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> space with a hidden absorbing fractal set <inline-formula><math display="inline"><semantics><msub><mi>F</mi><mi>μ</mi></msub></semantics></math></inline-formula> is considered. This search-like problem is treated in the framework of a diffusion–reaction equation, when an absorbing term is included inside a Fokker–Planck equation as a reaction term. This macroscopic approach for the 2D transport in the <inline-formula><math display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> space corresponds to the comb geometry, when the random walk consists of 1D movements in the <i>x</i> and <i>y</i> directions, respectively, as a direct-Cartesian product of the 1D movements. The main value in task is the first arrival time distribution (FATD) to sink points of the fractal set, where travelling particles are absorbed. Analytical expression for the FATD is obtained in the subdiffusive regime for both the fractal set of sinks and for a single sink.
first_indexed 2024-03-10T15:02:10Z
format Article
id doaj.art-746d57850fee4fd486700aadfedaa3f9
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-10T15:02:10Z
publishDate 2020-11-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-746d57850fee4fd486700aadfedaa3f92023-11-20T20:06:50ZengMDPI AGFractal and Fractional2504-31102020-11-01445210.3390/fractalfract4040052Fractional Diffusion to a Cantor Set in 2DAlexander Iomin0Trifce Sandev1Department of Physics, Technion, Haifa 32000, IsraelResearch Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, MacedoniaA random walk on a two dimensional square in <inline-formula><math display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> space with a hidden absorbing fractal set <inline-formula><math display="inline"><semantics><msub><mi>F</mi><mi>μ</mi></msub></semantics></math></inline-formula> is considered. This search-like problem is treated in the framework of a diffusion–reaction equation, when an absorbing term is included inside a Fokker–Planck equation as a reaction term. This macroscopic approach for the 2D transport in the <inline-formula><math display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> space corresponds to the comb geometry, when the random walk consists of 1D movements in the <i>x</i> and <i>y</i> directions, respectively, as a direct-Cartesian product of the 1D movements. The main value in task is the first arrival time distribution (FATD) to sink points of the fractal set, where travelling particles are absorbed. Analytical expression for the FATD is obtained in the subdiffusive regime for both the fractal set of sinks and for a single sink.https://www.mdpi.com/2504-3110/4/4/52comb modelBrownian searchfractional Fokker–Planck equationsubdiffusionCantor set
spellingShingle Alexander Iomin
Trifce Sandev
Fractional Diffusion to a Cantor Set in 2D
Fractal and Fractional
comb model
Brownian search
fractional Fokker–Planck equation
subdiffusion
Cantor set
title Fractional Diffusion to a Cantor Set in 2D
title_full Fractional Diffusion to a Cantor Set in 2D
title_fullStr Fractional Diffusion to a Cantor Set in 2D
title_full_unstemmed Fractional Diffusion to a Cantor Set in 2D
title_short Fractional Diffusion to a Cantor Set in 2D
title_sort fractional diffusion to a cantor set in 2d
topic comb model
Brownian search
fractional Fokker–Planck equation
subdiffusion
Cantor set
url https://www.mdpi.com/2504-3110/4/4/52
work_keys_str_mv AT alexanderiomin fractionaldiffusiontoacantorsetin2d
AT trifcesandev fractionaldiffusiontoacantorsetin2d