Fractional Diffusion to a Cantor Set in 2D
A random walk on a two dimensional square in <inline-formula><math display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> space with a hidden absorbing fractal set <inline-...
Main Authors: | Alexander Iomin, Trifce Sandev |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-11-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/4/4/52 |
Similar Items
-
Subdiffusion–Superdiffusion Random-Field Transition
by: Alexander Iomin
Published: (2023-10-01) -
Generalised Geometric Brownian Motion: Theory and Applications to Option Pricing
by: Viktor Stojkoski, et al.
Published: (2020-12-01) -
Brownian particle in non-equilibrium plasma
by: B.I. Lev, et al.
Published: (2009-01-01) -
The Fokker-Planck equation : methods of solution and applications /
by: 426109 Risken, H. (Hannes), 1934-, author
Published: (c199) -
Analytical Investigations into Anomalous Diffusion Driven by Stress Redistribution Events: Consequences of Lévy Flights
by: Josiah D. Cleland, et al.
Published: (2022-09-01)