Certain inequalities for the modified Bessel-type function

Abstract We establish some new inequalities for the modified Bessel-type function λν,σ(β)(x) $\lambda _{\nu ,\sigma }^{(\beta )} (x )$ studied by Glaeske et al. [in J. Comput. Appl. Math. 118(1–2):151–168, 2000] as the kernel of an integral transformation that modifies Krätzel’s integral transformat...

Full description

Bibliographic Details
Main Authors: Min-Jie Luo, Ravinder Krishna Raina
Format: Article
Language:English
Published: SpringerOpen 2019-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-019-1974-1
_version_ 1828886427870429184
author Min-Jie Luo
Ravinder Krishna Raina
author_facet Min-Jie Luo
Ravinder Krishna Raina
author_sort Min-Jie Luo
collection DOAJ
description Abstract We establish some new inequalities for the modified Bessel-type function λν,σ(β)(x) $\lambda _{\nu ,\sigma }^{(\beta )} (x )$ studied by Glaeske et al. [in J. Comput. Appl. Math. 118(1–2):151–168, 2000] as the kernel of an integral transformation that modifies Krätzel’s integral transformation. The inequalities obtained are closely related to the generalized Hurwitz–Lerch zeta function and complementary incomplete gamma function. We also deduce some useful inequalities for the modified Bessel function of the second kind Kν(x) $K_{\nu } (x )$ and Mills’ ratio M(x) $\mathsf{M} (x )$ as worthwhile applications of our main results.
first_indexed 2024-12-13T11:45:40Z
format Article
id doaj.art-747d4eb2148e479b9b589304a006fe3f
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-13T11:45:40Z
publishDate 2019-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-747d4eb2148e479b9b589304a006fe3f2022-12-21T23:47:32ZengSpringerOpenJournal of Inequalities and Applications1029-242X2019-01-012019111510.1186/s13660-019-1974-1Certain inequalities for the modified Bessel-type functionMin-Jie Luo0Ravinder Krishna Raina1Department of Mathematics, East China Normal UniversityM.P. University of Agriculture and TechnologyAbstract We establish some new inequalities for the modified Bessel-type function λν,σ(β)(x) $\lambda _{\nu ,\sigma }^{(\beta )} (x )$ studied by Glaeske et al. [in J. Comput. Appl. Math. 118(1–2):151–168, 2000] as the kernel of an integral transformation that modifies Krätzel’s integral transformation. The inequalities obtained are closely related to the generalized Hurwitz–Lerch zeta function and complementary incomplete gamma function. We also deduce some useful inequalities for the modified Bessel function of the second kind Kν(x) $K_{\nu } (x )$ and Mills’ ratio M(x) $\mathsf{M} (x )$ as worthwhile applications of our main results.http://link.springer.com/article/10.1186/s13660-019-1974-1Čebyšev inequalityGeneralized Hurwitz–Lerch zeta functionHölder’s inequalityIncomplete gamma functionMills’ ratio
spellingShingle Min-Jie Luo
Ravinder Krishna Raina
Certain inequalities for the modified Bessel-type function
Journal of Inequalities and Applications
Čebyšev inequality
Generalized Hurwitz–Lerch zeta function
Hölder’s inequality
Incomplete gamma function
Mills’ ratio
title Certain inequalities for the modified Bessel-type function
title_full Certain inequalities for the modified Bessel-type function
title_fullStr Certain inequalities for the modified Bessel-type function
title_full_unstemmed Certain inequalities for the modified Bessel-type function
title_short Certain inequalities for the modified Bessel-type function
title_sort certain inequalities for the modified bessel type function
topic Čebyšev inequality
Generalized Hurwitz–Lerch zeta function
Hölder’s inequality
Incomplete gamma function
Mills’ ratio
url http://link.springer.com/article/10.1186/s13660-019-1974-1
work_keys_str_mv AT minjieluo certaininequalitiesforthemodifiedbesseltypefunction
AT ravinderkrishnaraina certaininequalitiesforthemodifiedbesseltypefunction