Calibration Alignment Sensitivity in Corneal Terahertz Imaging

Improving the longitudinal modes coupling in layered spherical structure contributes significantly to corneal terahertz sensing, which plays a crucial role in the early diagnosis of cornea dystrophies. Using a steel sphere to calibrate reflection from the cornea sample assists in enhancing the resol...

Full description

Bibliographic Details
Main Authors: Faezeh Zarrinkhat, Mariangela Baggio, Joel Lamberg, Aleksi Tamminen, Irina Nefedova, Juha Ala-Laurinaho, Elsayed E. M. Khaled, Juan M. Rius, Jordi Romeu, Zachary Taylor
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/9/3237
Description
Summary:Improving the longitudinal modes coupling in layered spherical structure contributes significantly to corneal terahertz sensing, which plays a crucial role in the early diagnosis of cornea dystrophies. Using a steel sphere to calibrate reflection from the cornea sample assists in enhancing the resolution of longitudinal modes. The requirement and challenges toward applying the calibration sphere are introduced and addressed. Six corneas with different properties are spotted to study the effect of perturbations in the calibration sphere in a frequency range from 100 GHz to 600 GHz. A particle-swarm optimization algorithm is employed to quantify corneal characteristics considering cases of accurately calibrated and perturbed calibrated scenarios. For the first case, the study is carried out with signal-to-noise values of 40 dB, 50 dB and 60 dB at waveguide bands WR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.1</mn></mrow></semantics></math></inline-formula>, WR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.4</mn></mrow></semantics></math></inline-formula>, and WR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.2</mn></mrow></semantics></math></inline-formula>. As expected, better estimation is achieved in high-SNR cases. Furthermore, the lower waveguide band is revealed as the most proper band for the assessment of corneal features. For perturbed cases, the analysis is continued for the noise level of 60 dB in the three waveguide bands. Consequently, the error in the estimation of corneal properties rises significantly (around <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>30</mn><mo>%</mo></mrow></semantics></math></inline-formula>).
ISSN:1424-8220