Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $

In this paper, our aim is to obtain the $ K_2 $ analogues of both the Herbrand-Ribet theorem and the Vandiver's conjecture.

Bibliographic Details
Main Authors: Daochang Zhang, Chaochao Sun
Format: Article
Language:English
Published: AIMS Press 2022-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2022329?viewType=HTML
_version_ 1818955396904124416
author Daochang Zhang
Chaochao Sun
author_facet Daochang Zhang
Chaochao Sun
author_sort Daochang Zhang
collection DOAJ
description In this paper, our aim is to obtain the $ K_2 $ analogues of both the Herbrand-Ribet theorem and the Vandiver's conjecture.
first_indexed 2024-12-20T10:37:24Z
format Article
id doaj.art-7498df944444462e806cbf17a2929080
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-20T10:37:24Z
publishDate 2022-01-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-7498df944444462e806cbf17a29290802022-12-21T19:43:36ZengAIMS PressAIMS Mathematics2473-69882022-01-01745920592410.3934/math.2022329Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $Daochang Zhang0Chaochao Sun11. College of Sciences, Northeast Electric Power University, Jilin 132012, China2. School of Mathematics and Statistics, Linyi University, Linyi 276005, ChinaIn this paper, our aim is to obtain the $ K_2 $ analogues of both the Herbrand-Ribet theorem and the Vandiver's conjecture.https://www.aimspress.com/article/doi/10.3934/math.2022329?viewType=HTMLk<sub>2</sub> groupherbrand-ribet theoremvandiver's conjecture
spellingShingle Daochang Zhang
Chaochao Sun
Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $
AIMS Mathematics
k<sub>2</sub> group
herbrand-ribet theorem
vandiver's conjecture
title Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $
title_full Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $
title_fullStr Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $
title_full_unstemmed Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $
title_short Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $
title_sort remarks on the k 2 group of mathbb z zeta p
topic k<sub>2</sub> group
herbrand-ribet theorem
vandiver's conjecture
url https://www.aimspress.com/article/doi/10.3934/math.2022329?viewType=HTML
work_keys_str_mv AT daochangzhang remarksonthek2groupofmathbbzzetap
AT chaochaosun remarksonthek2groupofmathbbzzetap