Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $
In this paper, our aim is to obtain the $ K_2 $ analogues of both the Herbrand-Ribet theorem and the Vandiver's conjecture.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2022-01-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.2022329?viewType=HTML |
_version_ | 1818955396904124416 |
---|---|
author | Daochang Zhang Chaochao Sun |
author_facet | Daochang Zhang Chaochao Sun |
author_sort | Daochang Zhang |
collection | DOAJ |
description | In this paper, our aim is to obtain the $ K_2 $ analogues of both the Herbrand-Ribet theorem and the Vandiver's conjecture. |
first_indexed | 2024-12-20T10:37:24Z |
format | Article |
id | doaj.art-7498df944444462e806cbf17a2929080 |
institution | Directory Open Access Journal |
issn | 2473-6988 |
language | English |
last_indexed | 2024-12-20T10:37:24Z |
publishDate | 2022-01-01 |
publisher | AIMS Press |
record_format | Article |
series | AIMS Mathematics |
spelling | doaj.art-7498df944444462e806cbf17a29290802022-12-21T19:43:36ZengAIMS PressAIMS Mathematics2473-69882022-01-01745920592410.3934/math.2022329Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $Daochang Zhang0Chaochao Sun11. College of Sciences, Northeast Electric Power University, Jilin 132012, China2. School of Mathematics and Statistics, Linyi University, Linyi 276005, ChinaIn this paper, our aim is to obtain the $ K_2 $ analogues of both the Herbrand-Ribet theorem and the Vandiver's conjecture.https://www.aimspress.com/article/doi/10.3934/math.2022329?viewType=HTMLk<sub>2</sub> groupherbrand-ribet theoremvandiver's conjecture |
spellingShingle | Daochang Zhang Chaochao Sun Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $ AIMS Mathematics k<sub>2</sub> group herbrand-ribet theorem vandiver's conjecture |
title | Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $ |
title_full | Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $ |
title_fullStr | Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $ |
title_full_unstemmed | Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $ |
title_short | Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $ |
title_sort | remarks on the k 2 group of mathbb z zeta p |
topic | k<sub>2</sub> group herbrand-ribet theorem vandiver's conjecture |
url | https://www.aimspress.com/article/doi/10.3934/math.2022329?viewType=HTML |
work_keys_str_mv | AT daochangzhang remarksonthek2groupofmathbbzzetap AT chaochaosun remarksonthek2groupofmathbbzzetap |