Remark on a Fixed-Point Theorem in the Lebesgue Spaces of Variable Integrability <i>L</i><sup><i>p</i>(·)</sup>

In a personal communication, Prof. Domínguez Benavides noted that a fixed-point theorem for modular nonexpansive mappings in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi&g...

Full description

Bibliographic Details
Main Authors: Mohamed A. Khamsi, Osvaldo D. Méndez
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/1/157
_version_ 1827597449033678848
author Mohamed A. Khamsi
Osvaldo D. Méndez
author_facet Mohamed A. Khamsi
Osvaldo D. Méndez
author_sort Mohamed A. Khamsi
collection DOAJ
description In a personal communication, Prof. Domínguez Benavides noted that a fixed-point theorem for modular nonexpansive mappings in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mrow><mi>p</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi mathvariant="normal">Ω</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> obtained under the assumptions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mo>+</mo></msub><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula> and the property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> satisfied by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> will force <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mo>−</mo></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>. Therefore, the conclusion is well known. In this note, we establish said conclusion without the assumption <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mo>+</mo></msub><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-09T03:31:32Z
format Article
id doaj.art-74a2c2ed5b5a49a99bb102b994e00059
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T03:31:32Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-74a2c2ed5b5a49a99bb102b994e000592023-12-03T14:54:58ZengMDPI AGMathematics2227-73902022-12-0111115710.3390/math11010157Remark on a Fixed-Point Theorem in the Lebesgue Spaces of Variable Integrability <i>L</i><sup><i>p</i>(·)</sup>Mohamed A. Khamsi0Osvaldo D. Méndez1Department of Applied Mathematics and Sciences, Khalifa University, Abu Dhabi 127788, United Arab EmiratesDepartment of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USAIn a personal communication, Prof. Domínguez Benavides noted that a fixed-point theorem for modular nonexpansive mappings in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mrow><mi>p</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi mathvariant="normal">Ω</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> obtained under the assumptions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mo>+</mo></msub><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula> and the property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> satisfied by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> will force <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mo>−</mo></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>. Therefore, the conclusion is well known. In this note, we establish said conclusion without the assumption <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mo>+</mo></msub><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/11/1/157electrorheological fluidfixed pointmodular strict convexitymodular vector spacemodular uniform convexityNakano modular
spellingShingle Mohamed A. Khamsi
Osvaldo D. Méndez
Remark on a Fixed-Point Theorem in the Lebesgue Spaces of Variable Integrability <i>L</i><sup><i>p</i>(·)</sup>
Mathematics
electrorheological fluid
fixed point
modular strict convexity
modular vector space
modular uniform convexity
Nakano modular
title Remark on a Fixed-Point Theorem in the Lebesgue Spaces of Variable Integrability <i>L</i><sup><i>p</i>(·)</sup>
title_full Remark on a Fixed-Point Theorem in the Lebesgue Spaces of Variable Integrability <i>L</i><sup><i>p</i>(·)</sup>
title_fullStr Remark on a Fixed-Point Theorem in the Lebesgue Spaces of Variable Integrability <i>L</i><sup><i>p</i>(·)</sup>
title_full_unstemmed Remark on a Fixed-Point Theorem in the Lebesgue Spaces of Variable Integrability <i>L</i><sup><i>p</i>(·)</sup>
title_short Remark on a Fixed-Point Theorem in the Lebesgue Spaces of Variable Integrability <i>L</i><sup><i>p</i>(·)</sup>
title_sort remark on a fixed point theorem in the lebesgue spaces of variable integrability i l i sup i p i · sup
topic electrorheological fluid
fixed point
modular strict convexity
modular vector space
modular uniform convexity
Nakano modular
url https://www.mdpi.com/2227-7390/11/1/157
work_keys_str_mv AT mohamedakhamsi remarkonafixedpointtheoreminthelebesguespacesofvariableintegrabilityilisupipisup
AT osvaldodmendez remarkonafixedpointtheoreminthelebesguespacesofvariableintegrabilityilisupipisup