RhoGTPase stimulation is associated with strontium chloride treatment to counter simulated microgravity-induced changes in multipotent cell commitment

Countering Bone Loss in Space A chemical element naturally found for instance in seafood or grains, could counter bone loss from long-term spaceflight. Alain Guignandon and colleagues from the Université de Lyon à St-Etienne in France exposed multipotent embryonic fibroblasts to microgravity conditi...

Full description

Bibliographic Details
Main Authors: Fiona Louis, Wafa Bouleftour, Aline Rattner, Marie-Thérèse Linossier, Laurence Vico, Alain Guignandon
Format: Article
Language:English
Published: Nature Portfolio 2017-01-01
Series:npj Microgravity
Online Access:https://doi.org/10.1038/s41526-016-0004-6
Description
Summary:Countering Bone Loss in Space A chemical element naturally found for instance in seafood or grains, could counter bone loss from long-term spaceflight. Alain Guignandon and colleagues from the Université de Lyon à St-Etienne in France exposed multipotent embryonic fibroblasts to microgravity conditions similar to those found in space. They found the balance shifted in these stem cells from differentiating to bone-forming cells (osteoblasts) to differentiating to fatty-tissue forming cells (adipocytes). When the cells were treated with strontium, the shift toward osteoblastogenesis was regained. Strontium achieves this by sustaining the activity of two proteins that play a role in bone development but are suppressed in space. Strontium’s effect on the proteins could happen via release of vascular endothelial growth factor, which, under normal gravity conditions, plays a role in committing the cell to differentiation into osteoblasts rather than adipoyctes.
ISSN:2373-8065