Influence of cloud retrieval errors due to three-dimensional radiative effects on calculations of broadband shortwave cloud radiative effect

<p>We investigate how cloud retrieval errors due to the three-dimensional (3D) radiative effects affect broadband shortwave (SW) cloud radiative effects (CREs) in shallow cumulus clouds. A framework based on the combination of large eddy simulations (LESs) and radiative transfer (RT) models wa...

Full description

Bibliographic Details
Main Authors: A. S. Ademakinwa, Z. H. Tushar, J. Zheng, C. Wang, S. Purushotham, J. Wang, K. G. Meyer, T. Várnai, Z. Zhang
Format: Article
Language:English
Published: Copernicus Publications 2024-03-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/24/3093/2024/acp-24-3093-2024.pdf
Description
Summary:<p>We investigate how cloud retrieval errors due to the three-dimensional (3D) radiative effects affect broadband shortwave (SW) cloud radiative effects (CREs) in shallow cumulus clouds. A framework based on the combination of large eddy simulations (LESs) and radiative transfer (RT) models was developed to simulate both one-dimensional (1D) and 3D radiance, as well as SW broadband fluxes. Results show that the broadband SW fluxes reflected at top of the domain, transmitted at the surface, and absorbed in the atmosphere, computed from the cloud retrievals using 1D RT (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>F</mi><mrow><mn mathvariant="normal">1</mn><mi mathvariant="normal">D</mi></mrow><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="efa2a09c44b33ce8a3122b921590a509"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-3093-2024-ie00001.svg" width="18pt" height="14pt" src="acp-24-3093-2024-ie00001.png"/></svg:svg></span></span>), can provide reasonable broadband radiative energy estimates in comparison with those derived from the true cloud fields using 1D RT (<span class="inline-formula"><i>F</i><sub>1D</sub></span>). The difference between these 1D-RT-simulated fluxes (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>F</mi><mrow><mn mathvariant="normal">1</mn><mi mathvariant="normal">D</mi></mrow><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="8bbf0706b00205df7d0eefc92403c537"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-3093-2024-ie00002.svg" width="18pt" height="14pt" src="acp-24-3093-2024-ie00002.png"/></svg:svg></span></span>, <span class="inline-formula"><i>F</i><sub>1D</sub></span>) and the benchmark 3D RT simulations computed from the true cloud field (<span class="inline-formula"><i>F</i><sub>3D</sub></span>) depends primarily on the horizontal transport of photons in 3D RT, whose characteristics vary with the sun's geometry. When the solar zenith angle (SZA) is 5°, the domain-averaged <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>F</mi><mrow><mn mathvariant="normal">1</mn><mi mathvariant="normal">D</mi></mrow><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="39ccd6790dabb26c52adacb4261395cd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-3093-2024-ie00003.svg" width="18pt" height="14pt" src="acp-24-3093-2024-ie00003.png"/></svg:svg></span></span> values are in excellent agreement with the <span class="inline-formula"><i>F</i><sub>3D</sub></span>, all within 7 % relative CRE bias. When the SZA is 60°, the CRE differences between calculations from <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>F</mi><mrow><mn mathvariant="normal">1</mn><mi mathvariant="normal">D</mi></mrow><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a43d8b106be3a835697e030af69cb221"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-3093-2024-ie00004.svg" width="18pt" height="14pt" src="acp-24-3093-2024-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula"><i>F</i><sub>3D</sub></span> are determined by how the cloud side-brightening and darkening effects offset each other in the radiance, retrieval, and broadband fluxes. This study suggests that although the cloud property retrievals based on the 1D RT theory may be biased due to the 3D radiative effects, they still provide CRE estimates that are comparable to or better than CREs calculated from the true cloud properties using 1D RT.</p>
ISSN:1680-7316
1680-7324