Relative Energy Variation Characteristics Considering Interaction between Waves and Vegetation Structure
Although viscous sediment environments along the coast strongly attenuate waves, the attenuation dynamics and physical mechanism governing the attenuation process remain relatively unknown. Extremely complex interactions between muddy seabed have become increasingly important for wave evolution stud...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-08-01
|
Series: | Water |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4441/14/16/2567 |
_version_ | 1797407372967149568 |
---|---|
author | Ruey-Syan Shih Chi-Yu Li Wen-Kai Weng Chih-Hung Lin |
author_facet | Ruey-Syan Shih Chi-Yu Li Wen-Kai Weng Chih-Hung Lin |
author_sort | Ruey-Syan Shih |
collection | DOAJ |
description | Although viscous sediment environments along the coast strongly attenuate waves, the attenuation dynamics and physical mechanism governing the attenuation process remain relatively unknown. Extremely complex interactions between muddy seabed have become increasingly important for wave evolution studies pertaining to coastal areas. The coastal protection function of mangroves was confirmed during the 2004 South Asian tsunami. Nevertheless, most research has been limited to macro-qualitative analyses, including those on variations in the transmission coefficient <i>K</i><sub>t</sub> and reflection coefficient <i>K</i><sub>r</sub>, and subsequent comparisons. However, determining the micro-physical characteristics is challenging, similar to coastal vegetation analyses with respect to mangrove vegetation characteristics. This study aims to quantify the attenuation difference in the wave energy owing to the coastal vegetation structure, under different layout conditions and combinations. Particle image velocimetry (PIV) technology is used to explore the variations in the velocity field and velocity distribution during the interaction process and calculate the wave-induced kinetic energy before and after setting up the vegetation structure. The research results emphasize that the resistance and frictional effects generated by vegetation are inversely proportional to the size of the stem, and the variation of kinetic energy determined from the velocity distribution and the thickness of the vegetation stem is mainly due to the larger frictional resistance of dense vegetation, relative to the fast flow velocity above the vegetation. Different vegetation heights slightly affect the short-period waves; however, the impact on energy reduction was smaller. For long-period waves, vegetation height significantly reduces wave kinetic energy. |
first_indexed | 2024-03-09T03:40:28Z |
format | Article |
id | doaj.art-74c26422c956441687782f8ab06a1eee |
institution | Directory Open Access Journal |
issn | 2073-4441 |
language | English |
last_indexed | 2024-03-09T03:40:28Z |
publishDate | 2022-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Water |
spelling | doaj.art-74c26422c956441687782f8ab06a1eee2023-12-03T14:41:12ZengMDPI AGWater2073-44412022-08-011416256710.3390/w14162567Relative Energy Variation Characteristics Considering Interaction between Waves and Vegetation StructureRuey-Syan Shih0Chi-Yu Li1Wen-Kai Weng2Chih-Hung Lin3Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, TaiwanBachelor Degree Program in Ocean Engineering and Technology, National Taiwan Ocean University, Keelung 20224, TaiwanDepartment of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, TaiwanDepartment of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, TaiwanAlthough viscous sediment environments along the coast strongly attenuate waves, the attenuation dynamics and physical mechanism governing the attenuation process remain relatively unknown. Extremely complex interactions between muddy seabed have become increasingly important for wave evolution studies pertaining to coastal areas. The coastal protection function of mangroves was confirmed during the 2004 South Asian tsunami. Nevertheless, most research has been limited to macro-qualitative analyses, including those on variations in the transmission coefficient <i>K</i><sub>t</sub> and reflection coefficient <i>K</i><sub>r</sub>, and subsequent comparisons. However, determining the micro-physical characteristics is challenging, similar to coastal vegetation analyses with respect to mangrove vegetation characteristics. This study aims to quantify the attenuation difference in the wave energy owing to the coastal vegetation structure, under different layout conditions and combinations. Particle image velocimetry (PIV) technology is used to explore the variations in the velocity field and velocity distribution during the interaction process and calculate the wave-induced kinetic energy before and after setting up the vegetation structure. The research results emphasize that the resistance and frictional effects generated by vegetation are inversely proportional to the size of the stem, and the variation of kinetic energy determined from the velocity distribution and the thickness of the vegetation stem is mainly due to the larger frictional resistance of dense vegetation, relative to the fast flow velocity above the vegetation. Different vegetation heights slightly affect the short-period waves; however, the impact on energy reduction was smaller. For long-period waves, vegetation height significantly reduces wave kinetic energy.https://www.mdpi.com/2073-4441/14/16/2567hydraulic model testvegetationwave kinetic energyPIV technique |
spellingShingle | Ruey-Syan Shih Chi-Yu Li Wen-Kai Weng Chih-Hung Lin Relative Energy Variation Characteristics Considering Interaction between Waves and Vegetation Structure Water hydraulic model test vegetation wave kinetic energy PIV technique |
title | Relative Energy Variation Characteristics Considering Interaction between Waves and Vegetation Structure |
title_full | Relative Energy Variation Characteristics Considering Interaction between Waves and Vegetation Structure |
title_fullStr | Relative Energy Variation Characteristics Considering Interaction between Waves and Vegetation Structure |
title_full_unstemmed | Relative Energy Variation Characteristics Considering Interaction between Waves and Vegetation Structure |
title_short | Relative Energy Variation Characteristics Considering Interaction between Waves and Vegetation Structure |
title_sort | relative energy variation characteristics considering interaction between waves and vegetation structure |
topic | hydraulic model test vegetation wave kinetic energy PIV technique |
url | https://www.mdpi.com/2073-4441/14/16/2567 |
work_keys_str_mv | AT rueysyanshih relativeenergyvariationcharacteristicsconsideringinteractionbetweenwavesandvegetationstructure AT chiyuli relativeenergyvariationcharacteristicsconsideringinteractionbetweenwavesandvegetationstructure AT wenkaiweng relativeenergyvariationcharacteristicsconsideringinteractionbetweenwavesandvegetationstructure AT chihhunglin relativeenergyvariationcharacteristicsconsideringinteractionbetweenwavesandvegetationstructure |