Accurate semi‐direct lidar‐inertial odometry based on distance and normal direction

Abstract To improve the autonomous navigation capability of unmanned platforms, an accurate semi‐direct lidar‐inertial odometry algorithm with a new point cloud alignment evaluation metric is proposed. The lidar scan points are corrected through IMU (Inertial Measurement Unit) backward propagation,...

Full description

Bibliographic Details
Main Authors: Erliang Yao, Haitao Song, Jing Zhao
Format: Article
Language:English
Published: Wiley 2024-03-01
Series:Electronics Letters
Subjects:
Online Access:https://doi.org/10.1049/ell2.13152
Description
Summary:Abstract To improve the autonomous navigation capability of unmanned platforms, an accurate semi‐direct lidar‐inertial odometry algorithm with a new point cloud alignment evaluation metric is proposed. The lidar scan points are corrected through IMU (Inertial Measurement Unit) backward propagation, and the navigation states are predicted through IMU forward propagation. In the update of the navigation states, the point cloud alignment is evaluated based on the distances and the minimum normal direction deviations between the lidar scan points and the local fitted planes of the built map, achieving accurate observations for the navigation states. The proposed algorithm updates navigation states based on the iterative extended Kalman filter. Experiments indicate that the proposed algorithm has higher positioning accuracy than the state‐of‐the‐art method, which gets smaller positioning error (7.868 m) and 52.3% improvement on average.
ISSN:0013-5194
1350-911X