Enhancing Reliability of Tactical MANETs by Improving Routing Decisions

Mobile ad-hoc networks (MANETs) have been primarily designed to enhance tactical communications in a battlefield. They provide dynamic connectivity without requiring any pre-existing infrastructure. Their multi-hop capabilities can improve radio coverage significantly. The nature of tactical MANET o...

Full description

Bibliographic Details
Main Authors: Salman M. Al-Shehri, Pavel Loskot
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Journal of Low Power Electronics and Applications
Subjects:
Online Access:https://www.mdpi.com/2079-9268/8/4/49
Description
Summary:Mobile ad-hoc networks (MANETs) have been primarily designed to enhance tactical communications in a battlefield. They provide dynamic connectivity without requiring any pre-existing infrastructure. Their multi-hop capabilities can improve radio coverage significantly. The nature of tactical MANET operations requires more specialized routing protocols compared to the ones which are used in commercial MANET. Routing decisions in MANETs are usually conditioned on signal-to-interference-plus-noise ratio (SINR) measurements. In order to improve routing decisions for use in highly dynamic tactical MANETs, this paper proposes to combine two different metrics to achieve reliable multicast in multi-hop ad hoc networks. The resulting protocol combining received signal strength (RSS) with SINR to make routing decisions is referred to as Link Quality Aware Ad-hoc On-Demand Distance Vector (LQA-AODV) routing. The proposed routing protocol can quickly adapt to dynamic changes in network topology and link quality variations often encountered in tactical field operations. Using computer simulations, the performance of proposed protocol is shown to outperform other widely used reactive routing protocols assuming several performance metrics.
ISSN:2079-9268