Nano-SiO<sub>2</sub> and Silane Coupling Agent Co-Decorated Graphene Oxides with Enhanced Anti-Corrosion Performance of Epoxy Composite Coatings

Coatings are of great significance for irons and steels in regards to the harsh marine environment. Graphene oxides (GO) have been considered as an ideal filler material of epoxy coating. However, the undesired dispersion in the epoxy together with easy agglomeration and stacking remain great proble...

Full description

Bibliographic Details
Main Authors: Guangjie Hu, Yuxuan Xiao, Jie Ying
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/20/11087
Description
Summary:Coatings are of great significance for irons and steels in regards to the harsh marine environment. Graphene oxides (GO) have been considered as an ideal filler material of epoxy coating. However, the undesired dispersion in the epoxy together with easy agglomeration and stacking remain great problems for practical application of GO composited epoxy coatings. A method that can effectively solve both self-aggregation and poor dispersion of GO is highly desired. Herein, we present a high dispersion strategy of graphene oxides in epoxy by co-decoration of nano-SiO<sub>2</sub> and silane coupling agent. The co-decorated GO filled epoxy coating exhibits high anti-corrosion performance, including high electrochemical impedance, high self-corrosive potential, low self-corrosive current, and superior electrochemical impedance stability for ten days to Q235 carbon steel. This work displays new possibilities for designing novel coating materials with high performance toward practical marine anti-corrosion applications.
ISSN:1661-6596
1422-0067