Material Erosion and Dust Formation during Tungsten Exposure to Hollow-Cathode and Microjet Discharges

Tungsten erosion and dust occurrence are phenomena of great interest for fusion technology. Herein, we report results concerning the material damage and dust formation in the presence of high temperature and large area or concentrated discharges in helium and argon. In order to generate adequate pla...

Full description

Bibliographic Details
Main Authors: Valentina Marascu, Cristian Stancu, Veronica Satulu, Anca Bonciu, Christian Grisolia, Gheorghe Dinescu
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/19/6870
Description
Summary:Tungsten erosion and dust occurrence are phenomena of great interest for fusion technology. Herein, we report results concerning the material damage and dust formation in the presence of high temperature and large area or concentrated discharges in helium and argon. In order to generate adequate plasmas, we used tungsten electrodes in two experimental discharge systems, namely a hollow discharge and a microjet discharge. In both exposure cases, we noticed surface modification, which was assigned to sputtering, melting, and vaporization processes, and a significant dust presence. We report the formation on electrode surfaces of tungsten fuzz, nano-cones, nanofibers, and cauliflower- and faced-like particles, depending on the discharge and gas type. Dust with various morphologies and sizes was collected and analyzed with respect to the morphology, size distribution, and chemical composition. We noticed, with respect to erosion and particle formation, common behaviors of W in both laboratory and fusion facilities experiments.
ISSN:2076-3417