Integrable Solutions for Gripenberg-Type Equations with <i>m</i>-Product of Fractional Operators and Applications to Initial Value Problems

In this paper, we deal with the existence of integrable solutions of Gripenberg-type equations with <i>m</i>-product of fractional operators on a half-line <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics>&...

Full description

Bibliographic Details
Main Authors: Ateq Alsaadi, Mieczysław Cichoń, Mohamed M. A. Metwali
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/7/1172
_version_ 1797438455652810752
author Ateq Alsaadi
Mieczysław Cichoń
Mohamed M. A. Metwali
author_facet Ateq Alsaadi
Mieczysław Cichoń
Mohamed M. A. Metwali
author_sort Ateq Alsaadi
collection DOAJ
description In this paper, we deal with the existence of integrable solutions of Gripenberg-type equations with <i>m</i>-product of fractional operators on a half-line <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mo>+</mo></msup><mo>=</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. We prove the existence of solutions in some weighted spaces of integrable functions, i.e., the so-called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>L</mi><mn>1</mn><mi>N</mi></msubsup></semantics></math></inline-formula>-solutions. Because such a space is not a Banach algebra with respect to the pointwise product, we cannot follow the idea of the proof for continuous solutions, and we prefer a fixed point approach concerning the measure of noncompactness to obtain our results. Appropriate measures for this space and some of its subspaces are introduced. We also study the problem of uniqueness of solutions. To achieve our goal, we utilize a generalized Hölder inequality on the noted spaces. Finally, to validate our results, we study the solvability problem for some particularly interesting cases and initial value problems.
first_indexed 2024-03-09T11:38:09Z
format Article
id doaj.art-7514f82c98ee4b34a6d12321ef54646e
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T11:38:09Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-7514f82c98ee4b34a6d12321ef54646e2023-11-30T23:38:12ZengMDPI AGMathematics2227-73902022-04-01107117210.3390/math10071172Integrable Solutions for Gripenberg-Type Equations with <i>m</i>-Product of Fractional Operators and Applications to Initial Value ProblemsAteq Alsaadi0Mieczysław Cichoń1Mohamed M. A. Metwali2Department of Mathematics and Statistics, College of Science, Taif University, Taif 21944, Saudi ArabiaFaculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 4, 61-614 Poznań, PolandDepartment of Mathematics, Faculty of Sciences, Damanhour University, Damanhour 22514, EgyptIn this paper, we deal with the existence of integrable solutions of Gripenberg-type equations with <i>m</i>-product of fractional operators on a half-line <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mo>+</mo></msup><mo>=</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. We prove the existence of solutions in some weighted spaces of integrable functions, i.e., the so-called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>L</mi><mn>1</mn><mi>N</mi></msubsup></semantics></math></inline-formula>-solutions. Because such a space is not a Banach algebra with respect to the pointwise product, we cannot follow the idea of the proof for continuous solutions, and we prefer a fixed point approach concerning the measure of noncompactness to obtain our results. Appropriate measures for this space and some of its subspaces are introduced. We also study the problem of uniqueness of solutions. To achieve our goal, we utilize a generalized Hölder inequality on the noted spaces. Finally, to validate our results, we study the solvability problem for some particularly interesting cases and initial value problems.https://www.mdpi.com/2227-7390/10/7/1172weighted Lebesgue spacesmeasure of noncompactnessfractional calculusGripenberg-type equationsinitial value problemgeneralized Hölder inequality
spellingShingle Ateq Alsaadi
Mieczysław Cichoń
Mohamed M. A. Metwali
Integrable Solutions for Gripenberg-Type Equations with <i>m</i>-Product of Fractional Operators and Applications to Initial Value Problems
Mathematics
weighted Lebesgue spaces
measure of noncompactness
fractional calculus
Gripenberg-type equations
initial value problem
generalized Hölder inequality
title Integrable Solutions for Gripenberg-Type Equations with <i>m</i>-Product of Fractional Operators and Applications to Initial Value Problems
title_full Integrable Solutions for Gripenberg-Type Equations with <i>m</i>-Product of Fractional Operators and Applications to Initial Value Problems
title_fullStr Integrable Solutions for Gripenberg-Type Equations with <i>m</i>-Product of Fractional Operators and Applications to Initial Value Problems
title_full_unstemmed Integrable Solutions for Gripenberg-Type Equations with <i>m</i>-Product of Fractional Operators and Applications to Initial Value Problems
title_short Integrable Solutions for Gripenberg-Type Equations with <i>m</i>-Product of Fractional Operators and Applications to Initial Value Problems
title_sort integrable solutions for gripenberg type equations with i m i product of fractional operators and applications to initial value problems
topic weighted Lebesgue spaces
measure of noncompactness
fractional calculus
Gripenberg-type equations
initial value problem
generalized Hölder inequality
url https://www.mdpi.com/2227-7390/10/7/1172
work_keys_str_mv AT ateqalsaadi integrablesolutionsforgripenbergtypeequationswithimiproductoffractionaloperatorsandapplicationstoinitialvalueproblems
AT mieczysławcichon integrablesolutionsforgripenbergtypeequationswithimiproductoffractionaloperatorsandapplicationstoinitialvalueproblems
AT mohamedmametwali integrablesolutionsforgripenbergtypeequationswithimiproductoffractionaloperatorsandapplicationstoinitialvalueproblems