Summary: | Abstract Background An optimal osteotomy angle avoids shortening of the first metatarsal bone after hallux valgus surgery and therefore reduces the risk of transfer-metatarsalgia. The purpose of the present ex-vivo study was to investigate whether augmented reality (AR) would improve accuracy of the distal osteotomy during hallux valgus surgery. Methods Distal osteotomies of the first metatarsals were performed on a foot model by two surgeons with different levels of surgical experience each with (AR, n = 15 × 2) or without (controls, n = 15 × 2) overlay of a hologram depicting an angle of osteotomy perpendicular to the second metatarsal. Subsequently, the deviation of the osteotomy angle in the transverse plane was analyzed. Results Overall, AR decreased the extent of deviation and the AR guided osteotomies were more accurate (4.9 ± 4.2°) compared to the freehand cuts (6.7 ± 6.1°) by tendency (p = 0.2). However, while the inexperienced surgeon performed more accurate osteotomies with AR with a mean angle of 6.4 ± 3.5° compared to freehand 10.5 ± 5.5° (p = 0.02), no significant difference was noticed for the experienced surgeon with an osteotomy angle of around 3° in both cases. Conclusion This pilot-study suggests that AR guided osteotomies can potentially improve accuracy during hallux valgus correction, particularly for less experienced surgeons.
|