Adaptive Lossless Image Data Compression Method Inferring Data Entropy by Applying Deep Neural Network

When we compress a large amount of data, we face the problem of the time it takes to compress it. Moreover, we cannot predict how effective the compression performance will be. Therefore, we are not able to choose the best algorithm to compress the data to its minimum size. According to the Kolmogor...

Full description

Bibliographic Details
Main Authors: Shinichi Yamagiwa, Wenjia Yang, Koichi Wada
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/11/4/504
Description
Summary:When we compress a large amount of data, we face the problem of the time it takes to compress it. Moreover, we cannot predict how effective the compression performance will be. Therefore, we are not able to choose the best algorithm to compress the data to its minimum size. According to the Kolmogorov complexity, the compression performances of the algorithms implemented in the available compression programs in the system differ. Thus, it is impossible to deliberately select the best compression program before we try the compression operation. From this background, this paper proposes a method with a principal component analysis (PCA) and a deep neural network (DNN) to predict the entropy of data to be compressed. The method infers an appropriate compression program in the system for each data block of the input data and achieves a good compression ratio without trying to compress the entire amount of data at once. This paper especially focuses on lossless compression for image data, focusing on the image blocks. Through experimental evaluation, this paper shows the reasonable compression performance when the proposed method is applied rather than when a compression program randomly selected is applied to the entire dataset.
ISSN:2079-9292