On finite state automaton actions of HNN extensions of free abelian groups

HNN extensions of free abelian groups are considered. For arbitrary prime $p$ it is introduced a class of such extensions that act by finite automaton permutations over an alphabet $ \mathsf{X} $ of cardinality $p$ and belong to $p$-Sylow subgroup of the group of automaton permutations over such $ \...

Full description

Bibliographic Details
Main Author: V. Prokhorchuk
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2021-06-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/5000
_version_ 1797205791907774464
author V. Prokhorchuk
author_facet V. Prokhorchuk
author_sort V. Prokhorchuk
collection DOAJ
description HNN extensions of free abelian groups are considered. For arbitrary prime $p$ it is introduced a class of such extensions that act by finite automaton permutations over an alphabet $ \mathsf{X} $ of cardinality $p$ and belong to $p$-Sylow subgroup of the group of automaton permutations over such $ \mathsf{X} $. As a corollary it implies that all corresponding HNN extensions are residually $p$-finite.
first_indexed 2024-04-24T08:56:45Z
format Article
id doaj.art-752fb242aa9b40f3bc2d3dd60d4a2298
institution Directory Open Access Journal
issn 2075-9827
2313-0210
language English
last_indexed 2024-04-24T08:56:45Z
publishDate 2021-06-01
publisher Vasyl Stefanyk Precarpathian National University
record_format Article
series Karpatsʹkì Matematičnì Publìkacìï
spelling doaj.art-752fb242aa9b40f3bc2d3dd60d4a22982024-04-16T07:05:54ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102021-06-0113118018810.15330/cmp.13.1.180-1884344On finite state automaton actions of HNN extensions of free abelian groupsV. Prokhorchuk0https://orcid.org/0000-0001-5203-9239Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska str., 01601, Kyiv, UkraineHNN extensions of free abelian groups are considered. For arbitrary prime $p$ it is introduced a class of such extensions that act by finite automaton permutations over an alphabet $ \mathsf{X} $ of cardinality $p$ and belong to $p$-Sylow subgroup of the group of automaton permutations over such $ \mathsf{X} $. As a corollary it implies that all corresponding HNN extensions are residually $p$-finite.https://journals.pnu.edu.ua/index.php/cmp/article/view/5000automaton groupautomorphism of rooted treehnn extension
spellingShingle V. Prokhorchuk
On finite state automaton actions of HNN extensions of free abelian groups
Karpatsʹkì Matematičnì Publìkacìï
automaton group
automorphism of rooted tree
hnn extension
title On finite state automaton actions of HNN extensions of free abelian groups
title_full On finite state automaton actions of HNN extensions of free abelian groups
title_fullStr On finite state automaton actions of HNN extensions of free abelian groups
title_full_unstemmed On finite state automaton actions of HNN extensions of free abelian groups
title_short On finite state automaton actions of HNN extensions of free abelian groups
title_sort on finite state automaton actions of hnn extensions of free abelian groups
topic automaton group
automorphism of rooted tree
hnn extension
url https://journals.pnu.edu.ua/index.php/cmp/article/view/5000
work_keys_str_mv AT vprokhorchuk onfinitestateautomatonactionsofhnnextensionsoffreeabeliangroups