Ultra-Short-Term Load Forecasting of Electric Vehicle Charging Stations Based on Ensemble Learning

Accurate electric vehicle load forecasting is the basis for maintaining the safe and economical operation of charging stations, and for supporting the planning and decision-making of new and expanded charging infrastructure. In order to improve the accuracy of the ultra-short-term load forecasting o...

Full description

Bibliographic Details
Main Author: LI Hengjie, ZHU Jianghao, FU Xiaofei, FANG Chen, LIANG Daming, ZHOU Yun
Format: Article
Language:zho
Published: Editorial Office of Journal of Shanghai Jiao Tong University 2022-08-01
Series:Shanghai Jiaotong Daxue xuebao
Subjects:
Online Access:http://xuebao.sjtu.edu.cn/article/2022/1006-2467/1006-2467-56-8-1004.shtml
Description
Summary:Accurate electric vehicle load forecasting is the basis for maintaining the safe and economical operation of charging stations, and for supporting the planning and decision-making of new and expanded charging infrastructure. In order to improve the accuracy of the ultra-short-term load forecasting of charging stations, an ultra-short-term load forecasting method based on ensemble learning is proposed. First, aimed at the prediction accuracy and the response speed, the light gradient boosting machine (LightGBM) framework is utilized to build several basic regressors. Next, the basic regressors are integrated by using the adaptive boosting (Adaboost) method. Finally, by using hyperparameter adjustment and optimization, a dual-system for ultra-short-term load forecasting of charging stations named energy ensemble boosting-light gradient boosting machine (EEB-LGBM) is generated. The analysis of the numerical examples shows that the proposed model has a higher accuracy than the back propagation neural network (BPNN), convolutional neural networks-long short term memory (CNN-LSTM), autoregressive integrated moving average (ARIMA), and other load forecasting methods, which can greatly reduce the training time and the computing power requirements of the training platform.
ISSN:1006-2467